Debkumar Pain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11588204/publications.pdf

Version: 2024-02-01

59 papers

4,060 citations

32 h-index 55 g-index

59 all docs 59 docs citations

59 times ranked

4600 citing authors

#	Article	IF	CITATIONS
1	Splitting the functions of Rim2, a mitochondrial iron/pyrimidine carrier. Mitochondrion, 2019, 47, 256-265.	3.4	8
2	Mitochondria export iron–sulfur and sulfur intermediates to the cytoplasm for iron–sulfur cluster assembly and tRNA thiolation in yeast. Journal of Biological Chemistry, 2019, 294, 9489-9502.	3.4	54
3	Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation. Cell Chemical Biology, 2018, 25, 738-748.e3.	5.2	28
4	Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria. Mitochondrion, 2018, 40, 29-41.	3.4	10
5	Nfs1 cysteine desulfurase protein complexes and phosphorylation sites as assessed by mass spectrometry. Data in Brief, 2017, 15, 775-799.	1.0	2
6	In vitro characterization of a novel Isu homologue from Drosophila melanogaster for de novo FeS-cluster formation. Metallomics, 2017, 9, 48-60.	2.4	16
7	6 Fe-S cluster assembly and regulation in yeast. , 2017, , 117-160.		0
8	Roles of Feâ€"S proteins: from cofactor synthesis to iron homeostasis to protein synthesis. Current Opinion in Genetics and Development, 2016, 38, 45-51.	3.3	55
9	Fe-S Cluster Biogenesis in Isolated Mammalian Mitochondria. Journal of Biological Chemistry, 2015, 290, 640-657.	3.4	28
10	Turning Saccharomyces cerevisiae into a Frataxin-Independent Organism. PLoS Genetics, 2015, 11, e1005135.	3.5	33
11	15. Fe-S cluster assembly and regulation in yeast. , 2014, , 367-410.		0
12	Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles. Antioxidants and Redox Signaling, 2014, 20, 1501-1523.	5.4	40
13	Frataxin-bypassing Isu1: characterization of the bypass activity in cells and mitochondria. Biochemical Journal, 2014, 459, 71-81.	3.7	34
14	Frataxin or a mutant Feâ€S cluster scaffold protein with frataxinâ€bypassing ability directly stimulates mitochondrial cysteine desulfurase by exposing substrateâ€binding sites (578.4). FASEB Journal, 2014, 28, 578.4.	0.5	0
15	Frataxin Directly Stimulates Mitochondrial Cysteine Desulfurase by Exposing Substrate-binding Sites, and a Mutant Fe-S Cluster Scaffold Protein with Frataxin-bypassing Ability Acts Similarly. Journal of Biological Chemistry, 2013, 288, 36773-36786.	3.4	85
16	Mitochondrial Two-Component Signaling Systems in Candida albicans. Eukaryotic Cell, 2013, 12, 913-922.	3.4	27
17	Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe–S cluster synthesis. Biochemical Journal, 2012, 448, 171-187.	3.7	58
18	Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E926-33.	7.1	78

#	Article	IF	Citations
19	Mutation in the Fe–S scaffold protein Isu bypasses frataxin deletion. Biochemical Journal, 2012, 441, 473-480.	3.7	43
20	lonizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 2012, 327, 48-60.	7.2	1,019
21	Identification of a Nfs1p-bound persulfide intermediate in Feâ€"S cluster synthesis by intact mitochondria. Mitochondrion, 2012, 12, 539-549.	3.4	23
22	Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria. Biochemical Journal, 2011, 440, 137-146.	3.7	42
23	Long-Term Consequences of Radiation-Induced Bystander Effects Depend on Radiation Quality and Dose and Correlate with Oxidative Stress. Radiation Research, 2011, 175, 405-415.	1.5	130
24	Co-precipitation of Phosphate and Iron Limits Mitochondrial Phosphate Availability in Saccharomyces cerevisiae Lacking the Yeast Frataxin Homologue (YFH1). Journal of Biological Chemistry, 2011, 286, 6071-6079.	3.4	18
25	Isd11p Protein Activates the Mitochondrial Cysteine Desulfurase Nfs1p Protein. Journal of Biological Chemistry, 2011, 286, 38242-38252.	3.4	9
26	Mitochondrial NADH Kinase, Pos5p, Is Required for Efficient Iron-Sulfur Cluster Biogenesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 39409-39424.	3.4	32
27	Frataxin and Mitochondrial FeS Cluster Biogenesis. Journal of Biological Chemistry, 2010, 285, 26737-26743.	3.4	128
28	Mitochondrial Complex II Dysfunction Can Contribute Significantly to Genomic Instability after Exposure to Ionizing Radiation. Radiation Research, 2009, 172, 737-745.	1,5	83
29	Chapter 14 Nucleotideâ€Dependent Ironâ€Sulfur Cluster Biogenesis of Endogenous and Imported Apoproteins in Isolated Intact Mitochondria. Methods in Enzymology, 2009, 456, 247-266.	1.0	21
30	GTP Is Required for Iron-Sulfur Cluster Biogenesis in Mitochondria. Journal of Biological Chemistry, 2008, 283, 1362-1371.	3.4	36
31	Dre2, a Conserved Eukaryotic Fe/S Cluster Protein, Functions in Cytosolic Fe/S Protein Biogenesis. Molecular and Cellular Biology, 2008, 28, 5569-5582.	2.3	145
32	GTP in the mitochondrial matrix plays a crucial role in organellar iron homoeostasis1. Biochemical Journal, 2006, 400, 163-168.	3.7	41
33	Mrs3p, Mrs4p, and Frataxin Provide Iron for Fe-S Cluster Synthesis in Mitochondria. Journal of Biological Chemistry, 2006, 281, 22493-22502.	3.4	91
34	Normal Human Fibroblasts Exposed to High- or Low-Dose Ionizing Radiation: Differential Effects on Mitochondrial Protein Import and Membrane Potential. Antioxidants and Redox Signaling, 2006, 8, 1253-1261.	5.4	45
35	A GTP:AMP Phosphotransferase, Adk2p, in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 18604-18609.	3.4	8
36	A novel role of Mgm1p, a dynamin-related GTPase, in ATP synthase assembly and cristae formation/maintenance. Biochemical Journal, 2004, 381, 19-23.	3.7	71

#	Article	IF	CITATIONS
37	Nucleoside diphosphate kinase of Saccharomyces cerevisiae, Ynk1p: localization to the mitochondrial intermembrane space. Biochemical Journal, 2003, 370, 805-815.	3.7	41
38	Bimodal Targeting of Microsomal CYP2E1 to Mitochondria through Activation of an N-terminal Chimeric Signal by cAMP-mediated Phosphorylation. Journal of Biological Chemistry, 2002, 277, 40583-40593.	3.4	135
39	Self-association and precursor protein binding of Saccharomyces cerevisiae Tom40p, the core component of the protein translocation channel of the mitochondrial outer membrane. Biochemical Journal, 2001, 356, 207-215.	3.7	24
40	Adrenodoxin Reductase Homolog (Arh1p) of Yeast Mitochondria Required for Iron Homeostasis. Journal of Biological Chemistry, 2001, 276, 1503-1509.	3.4	111
41	Distinct roles for two N-terminal cleaved domains in mitochondrial import of the yeast frataxin homolog, Yfh1p. Human Molecular Genetics, 2001, 10, 259-269.	2.9	34
42	J-domain Protein, Jac1p, of Yeast Mitochondria Required for Iron Homeostasis and Activity of Fe-S Cluster Proteins. Journal of Biological Chemistry, 2001, 276, 17524-17532.	3.4	71
43	Self-association and precursor protein binding of Saccharomyces cerevisiae Tom40p, the core component of the protein translocation channel of the mitochondrial outer membrane. Biochemical Journal, 2001, 356, 207.	3.7	21
44	Mechanisms of mitochondrial protein import. Essays in Biochemistry, 2000, 36, 61-73.	4.7	23
45	Yeast Mitochondrial Protein, Nfs1p, Coordinately Regulates Iron-Sulfur Cluster Proteins, Cellular Iron Uptake, and Iron Distribution. Journal of Biological Chemistry, 1999, 274, 33025-33034.	3.4	172
46	A Multisubunit Complex of Outer and Inner Mitochondrial Membrane Protein Translocases Stabilized in Vivo by Translocation Intermediates. Journal of Biological Chemistry, 1999, 274, 22847-22854.	3.4	41
47	The Yeast Connection to Friedreich Ataxia. American Journal of Human Genetics, 1999, 64, 365-371.	6.2	47
48	A GTP-dependent "Push―ls Generally Required for Efficient Protein Translocation across the Mitochondrial Inner Membrane into the Matrix. Journal of Biological Chemistry, 1998, 273, 20941-20950.	3.4	28
49	Mt-Hsp70 Homolog, Ssc2p, Required for Maturation of Yeast Frataxin and Mitochondrial Iron Homeostasis. Journal of Biological Chemistry, 1998, 273, 18389-18393.	3.4	160
50	GTP Hydrolysis Is Essential for Protein Import into the Mitochondrial Matrix. Journal of Biological Chemistry, 1998, 273, 1420-1424.	3.4	33
51	Machinery for Protein Import into Chloroplasts and Mitochondria. , 1991, 13, 153-166.		3
52	Identification of a receptor for protein import into mitochondria. Nature, 1990, 347, 444-449.	27.8	123
53	Isolation and characterization of the gene for a yeast mitochondrial import receptor. Nature, 1990, 347, 488-491.	27.8	82
54	Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones. Nature, 1988, 331, 232-237.	27.8	210

#	Article	IF	CITATIONS
55	Import receptor in chloroplast envelope. Nature, 1988, 333, 307-307.	27.8	4
56	Protein A: nature's universal anti-antibody. Trends in Biochemical Sciences, 1982, 7, 74-76.	7. 5	108
57	Preparation of protein A-peroxidase monoconjugate using a heterobifunctional reagent, and its use in enzyme immunoassays. Journal of Immunological Methods, 1981, 40, 219-230.	1.4	34
58	[11] Preparation of protein A—Enzyme monoconjugate and its use as a reagent in enzyme immunoassays. Methods in Enzymology, 1981, , 176-191.	1.0	6
59	Protein a-enzyme monoconjugate as a versatile tool for enzyme immunoassays. FEBS Letters, 1979, 107, 73-76.	2.8	8