
Antonio Canals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1158626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic liquid-modified materials for solid-phase extraction and separation: A review. Analytica Chimica Acta, 2012, 715, 19-41.	5.4	321
2	A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosensors and Bioelectronics, 2017, 91, 885-891.	10.1	274
3	Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography–mass spectrometry for UV-filter determination in water samples. Journal of Chromatography A, 2011, 1218, 2467-2475.	3.7	169
4	An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 584, 189-195.	5.4	161
5	Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection. Talanta, 2009, 78, 537-541.	5.5	140
6	Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta, 2010, 81, 549-555.	5.5	138
7	Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatography analysis. Journal of Chromatography A, 2007, 1174, 95-103.	3.7	125
8	Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 79-80, 88-93.	2.9	117
9	Simple and commercial readily-available approach for the direct use of ionic liquid-based single-drop microextraction prior to gas chromatography. Journal of Chromatography A, 2009, 1216, 1290-1295.	3.7	112
10	Determination of organochlorine pesticides in water samples by dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2009, 649, 218-221.	5.4	97
11	Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of Chromatography A, 2005, 1089, 25-30.	3.7	93
12	Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2009, 638, 29-35.	5.4	81
13	Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 17-22.	3.7	78
14	Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (<i>Prunus) Tj ETQq0 0 0 rg</i>	gBT /Overl 5.2	ock 10 Tf 50 76
15	Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry. Analytica Chimica Acta, 2011, 691, 56-61.	5.4	74
16	Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosensors and Bioelectronics, 2018, 109, 123-131.	10.1	71
17	Ionic liquid-functionalized silica for selective solid-phase extraction of organic acids, amines and aldehydes. Journal of Chromatography A, 2012, 1226, 2-10.	3.7	70
18	Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis. Talanta, 2015, 131, 348-353.	5.5	66

#	Article	IF	CITATIONS
19	Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: Extraction and electrochemical determination of benzophenone-3 and triclosan. Analytica Chimica Acta, 2008, 616, 28-35.	5.4	64
20	Empirical model for estimating drop size distributions of aerosols generated by inductively coupled plasma nebulizers. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1988, 43, 1321-1335.	2.9	62
21	Effect of analyte and solvent transport on signal intensities in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1992, 47, 659-673.	2.9	62
22	Acid effects in inductively coupled plasma atomic emission spectrometry with different nebulizers operated at very low sample consumption rates. Journal of Analytical Atomic Spectrometry, 1998, 13, 55-62.	3.0	60
23	Comparison of characteristics and limits of detection of pneumatic micronebulizers and a conventional nebulizer operating at low uptake rates in ICP-AES. Journal of Analytical Atomic Spectrometry, 1999, 14, 1289-1295.	3.0	60
24	Evaluation of several commercially available spray chambers for use in inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 1999, 14, 61-67.	3.0	59
25	Direct ultrasound-assisted extraction of heavy metals from sewage sludge samples for ICP-OES analysis. Analytica Chimica Acta, 2004, 516, 187-196.	5.4	58
26	Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 592, 9-15.	5.4	58
27	Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation. Analytica Chimica Acta, 2006, 561, 210-217.	5.4	57
28	A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen. Ultrasonics Sonochemistry, 2009, 16, 564-569.	8.2	57
29	Mercury determination in urine samples by gold nanostructured screen-printed carbon electrodes after vortex-assisted ionic liquid dispersive liquid–liquid microextraction. Analytica Chimica Acta, 2016, 915, 49-55.	5.4	57
30	Determination of nitroaromatic explosives in water samples by direct ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta, 2011, 85, 2546-2552.	5.5	56
31	Fundamental studies on pneumatic generation and aerosol transport in atomic spectrometry: effect of mineral acids on emission intensity in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 305-321.	2.9	55
32	Fast and Selective Microfluidic Chips for Electrochemical Antioxidant Sensing in Complex Samples. Analytical Chemistry, 2010, 82, 2925-2931.	6.5	54
33	Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochimica Acta, 2017, 227, 275-284.	5.2	53
34	Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. Journal of Analytical Atomic Spectrometry, 2008, 23, 717.	3.0	52
35	Dispersive micro solid-phase extraction (DµSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS). Talanta, 2019, 191, 162-170.	5.5	51
36	Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion, chromium(VI) organic solvent extraction and flame atomic absorption spectrometry. Analytica Chimica Acta, 1998, 372, 399-409.	5.4	50

#	Article	IF	CITATIONS
37	Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta, 2014, 120, 191-197.	5.5	50
38	Experimental evaluation of the Nukiyama-Tanasawa equation for pneumatic nebulisers used in plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 1990, 5, 61.	3.0	49
39	Flow injection method for the rapid determination of chemical oxygen demand based on microwave digestion and chromium speciation in flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1996, 51, 1791-1800.	2.9	49
40	Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography⬜mass spectrometry. Journal of Chromatography A, 2016, 1458, 18-24.	3.7	49
41	A modified zeolite/iron oxide composite as a sorbent for magnetic dispersive solid-phase extraction for the preconcentration of nonsteroidal anti-inflammatory drugs in water and urine samples. Journal of Chromatography A, 2019, 1603, 33-43.	3.7	49
42	Zeolites and zeolite-based materials in extraction and microextraction techniques. Analyst, The, 2019, 144, 366-387.	3.5	48
43	Metal applications of liquid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2019, 112, 241-247.	11.4	47
44	Comparison of several spray chambers operating at very low liquid flow rates in inductively coupled plasma atomic emission spectrometry. Fresenius' Journal of Analytical Chemistry, 2000, 368, 773-779.	1.5	46
45	Evolution of drop size distributions for pneumatically generated aerosols in inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1990, 45, 591-601.	2.9	44
46	Dispersive liquid–liquid microextraction combined with laser-induced breakdown spectrometry and inductively coupled plasma optical emission spectrometry to elemental analysis. Microchemical Journal, 2015, 121, 219-226.	4.5	41
47	Graphene oxide/Fe3O4 as sorbent for magnetic solid-phase extraction coupled with liquid chromatography to determine 2,4,6-trinitrotoluene in water samples. Analytical and Bioanalytical Chemistry, 2017, 409, 2665-2674.	3.7	41
48	Evaluation of herringbone carbon nanotubes-modified electrodes for the simultaneous determination of ascorbic acid and uric acid. Electrochimica Acta, 2018, 285, 284-291.	5.2	41
49	Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 4679-4687.	3.7	40
50	Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system. Food Chemistry, 2019, 272, 141-147.	8.2	39
51	Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction for determination of mercury in water samples. Talanta, 2015, 135, 34-40.	5.5	38
52	A modified ZSM-5 zeolite/Fe ₂ O ₃ composite as a sorbent for magnetic dispersive solid-phase microextraction of cadmium, mercury and lead from urine samples prior to inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2018, 33, 856-866.	3.0	37
53	Ultrasound-assisted method for determination of chemical oxygen demand. Analytical and Bioanalytical Chemistry, 2002, 374, 1132-1140.	3.7	36
54	Speciation of chromium by dispersive liquid–liquid microextraction followed by laser-induced breakdown spectrometry detection (DLLME–LIBS). Journal of Analytical Atomic Spectrometry, 2015, 30, 2541-2547.	3.0	36

#	Article	IF	CITATIONS
55	Dispersive liquid-liquid microextraction based on deep eutectic solvent for elemental impurities determination in oral and parenteral drugs by inductively coupled plasma optical emission spectrometry. Analytica Chimica Acta, 2021, 1185, 339052.	5.4	34
56	Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 435-443.	2.9	33
57	Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis. Talanta, 2013, 117, 419-424.	5.5	33
58	Microwave activation of the electro-oxidation of glucose in alkaline media. Physical Chemistry Chemical Physics, 2005, 7, 3552.	2.8	32
59	Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene. Analytical and Bioanalytical Chemistry, 2014, 406, 2197-2204.	3.7	31
60	Determination of cadmium in used engine oil, gasoline and diesel by electrothermal atomic absorption spectrometry using magnetic ionic liquid-based dispersive liquid-liquid microextraction. Talanta, 2020, 220, 121395.	5.5	31
61	Comparative Study of Several Nebulizers in Inductively Coupled Plasma Atomic Emission Spectrometry: Low-pressureversus High-pressure Nebulization. Journal of Analytical Atomic Spectrometry, 1997, 12, 445-451.	3.0	30
62	Analysis of metals and phosphorus in biodiesel B100 from different feedstock using a Flow Blurring® multinebulizer in inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 2014, 827, 15-21.	5.4	29
63	Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer. Analyst, The, 2000, 125, 2344-2349.	3.5	28
64	Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring® technology. Journal of Analytical Atomic Spectrometry, 2010, 25, 1724.	3.0	28
65	The determination of V and Mo by dispersive liquid–liquid microextraction (DLLME) combined with laser-induced breakdown spectroscopy (LIBS). Journal of Analytical Atomic Spectrometry, 2014, 29, 1813-1818.	3.0	28
66	Trivalent manganese as an environmentally friendly oxidizing reagent for microwave- and ultrasound-assisted chemical oxygen demand determination. Ultrasonics Sonochemistry, 2009, 16, 686-691.	8.2	27
67	Tungsten coil atomic emission spectrometry combined with dispersive liquid–liquid microextraction: A synergistic association for chromium determination in water samples. Talanta, 2016, 148, 602-608.	5.5	27
68	Evaluation of various nebulizers for use in microwave induced plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2007, 22, 1174.	3.0	26
69	Investigation of ICP-MS spectral interferences in the determination of Rh, Pd and Pt in road dust: Assessment of correction algorithms via uncertainty budget analysis and interference alleviation by preliminary acid leaching. Talanta, 2008, 77, 889-896.	5.5	26
70	Rapid determination of octanol–water partition coefficient using vortex-assisted liquid–liquid microextraction. Journal of Chromatography A, 2014, 1330, 1-5.	3.7	26
71	Hyphenation of single-drop microextraction with laser-induced breakdown spectrometry for trace analysis in liquid samples: a viability study. Analytical Methods, 2015, 7, 877-883.	2.7	25
72	Behaviour of the thermospray nebulizer as a system for the introduction of organic solutions in flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1996, 51, 1535-1549.	2.9	24

#	Article	IF	CITATIONS
73	A Microwave-Powered Thermospray Nebulizer for Liquid Sample Introduction in Inductively Coupled Plasma Atomic Emission Spectrometry. Analytical Chemistry, 1997, 69, 3578-3586.	6.5	24
74	Flow focusing pneumatic nebulizer in comparison with several micronebulizers in inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2006, 21, 770-777.	3.0	24
75	Analysis of biodiesel and oil samples by on-line calibration using a Flow Blurring® multinebulizer in ICP OES without oxygen addition. Journal of Analytical Atomic Spectrometry, 2012, 27, 2102.	3.0	24
76	Rapid determination of hydrophilic phenols in olive oil by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes. Talanta, 2018, 181, 44-51.	5.5	24
77	Influence of solvent physical properties on drop size distribution, transport and sensitivity in flame atomic absorption spectrometry with pneumatic nebulization. Journal of Analytical Atomic Spectrometry, 1991, 6, 573.	3.0	23
78	Behaviour of a desolvation system based on microwave radiation heating for use in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 1201-1213.	2.9	23
79	Preliminary characterization and fundamental properties of aerosols generated by a flow focusing pneumatic nebulizer. Journal of Analytical Atomic Spectrometry, 2004, 19, 1340-1346.	3.0	23
80	Determination of four bisphenols in water and urine samples by magnetic dispersive solidâ€phase extraction using a modified zeolite/iron oxide composite prior to liquid chromatography diode array detection. Journal of Separation Science, 2020, 43, 1808-1816.	2.5	23
81	New ultrasound assisted chemical oxygen demand determination. Ultrasonics Sonochemistry, 2002, 9, 143-149.	8.2	22
82	Effect of long-chain surfactants on drop size distribution, transport efficiency and sensitivity in flame atomic absorption spectrometry with pneumatic nebulization. Journal of Analytical Atomic Spectrometry, 1991, 6, 139.	3.0	21
83	Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry. Analytica Chimica Acta, 2017, 971, 40-47.	5.4	21
84	Behaviour of a single-bore high-pressure pneumatic nebulizer operating with alcohols in inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 1996, 11, 949.	3.0	20
85	Evaluation of a microwave desolvation system in inductively coupled plasma mass spectrometry with low acid concentration solutions. Journal of Analytical Atomic Spectrometry, 1998, 13, 175-181.	3.0	20
86	Aerosol generation of As and Se hydrides using a new Flow Blurring® multiple nebulizer for sample introduction in inductively coupled plasma optical emission spectrometry. Microchemical Journal, 2014, 112, 82-86.	4.5	20
87	Total sulfur determination in liquid fuels by ICP-OES after oxidation-extraction desulfurization using magnetic graphene oxide. Fuel, 2017, 210, 507-513.	6.4	20
88	Development of a Fully Automatic Microwave Assisted Chemical Oxygen Demand (COD) Measurement Device. Instrumentation Science and Technology, 2003, 31, 249-259.	1.8	19
89	Development and characterization of a Flow Focusing multi nebulization system for sample introduction in ICP-based spectrometric techniques. Journal of Analytical Atomic Spectrometry, 2009, 24, 1213.	3.0	19
90	Complexation-mediated electromembrane extraction of highly polar basic drugs—a fundamental study with catecholamines in urine as model system. Analytical and Bioanalytical Chemistry, 2017, 409, 4215-4223.	3.7	19

#	Article	IF	CITATIONS
91	Effect of surfactants in flame atomic absorption spectrometry with pneumatic nebulization: influence of hydrophobic chain length. Journal of Analytical Atomic Spectrometry, 1993, 8, 109.	3.0	18
92	Aerosol desolvation studies with a thermospray nebulizer coupled to inductively coupled plasma atomic emission spectrometry. Analyst, The, 1998, 123, 1229-1234.	3.5	17
93	Desolvation of acid solutions in inductively coupled plasma atomic emission spectrometry by infrared radiation. Comparison with a system based on microwave radiation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 1321-1333.	2.9	17
94	Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes. Analyst, The, 2005, 130, 1425.	3.5	17
95	Magnetic dispersive solid-phase extraction using a zeolite-based composite for direct electrochemical determination of lead(II) in urine using screen-printed electrodes. Mikrochimica Acta, 2020, 187, 87.	5.0	17
96	A new multinebulizer for spectrochemical analysis: wear metal determination in used lubricating oils by on-line standard dilution analysis (SDA) using inductively coupled plasma optical emission spectrometry (ICP OES). Journal of Analytical Atomic Spectrometry, 2020, 35, 265-272.	3.0	17
97	Magnetic dispersive solid-phase extraction using ZSM-5 zeolite/Fe2O3 composite coupled with screen-printed electrodes based electrochemical detector for determination of cadmium in urine samples. Talanta, 2020, 220, 121394.	5.5	17
98	Characterization of a new single-bore high-pressure pneumatic nebulizer for atomic spectrometry—I. Drop size distribution, transport variables and analytical signal in flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1993, 48, 373-386.	2.9	16
99	Behaviour of a flow focusing pneumatic nebulizer with high total dissolved solids solution on radially- and axially-viewed inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2006, 21, 1072-1075.	3.0	16
100	Unmodified manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of trace metal–APDC complexes followed by inductively coupled plasma mass spectrometry analysis. Journal of Analytical Atomic Spectrometry, 2012, 27, 1743.	3.0	16
101	Flavin mononucleotide-exfoliated graphene flakes as electrodes for the electrochemical determination of uric acid in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 2016, 783, 41-48.	3.8	16
102	Microwave desolvation for acid sample introduction in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 469-480.	2.9	15
103	Exploring the electrochemical behavior of screen printed graphite electrodes in a room temperature ionic liquid. RSC Advances, 2012, 2, 7735.	3.6	15
104	Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a Flow Blurring® multinebulizer. Analytical and Bioanalytical Chemistry, 2017, 409, 5481-5490.	3.7	15
105	Determination of siloxanes in water samples employing graphene oxide/Fe ₃ O ₄ nanocomposite as sorbent for magnetic solidâ€phase extraction prior to GC–MS. Journal of Separation Science, 2018, 41, 4177-4184.	2.5	15
106	Experimental Evaluation of the Nukiyama-Tanasawa Equation for Pneumatically Generated Aerosols Used in Flame Atomic Spectrometry. Applied Spectroscopy, 1992, 46, 669-676.	2.2	14
107	An experimental study of the behaviour of several elements in inductively coupled plasma mass spectrometry using the single-bore high-pressure pneumatic nebulizer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 985-996.	2.9	14
108	Evaluation of new models for drop size distribution prediction of aerosols in atomic spectrometry: pneumatic nebulizers. Journal of Analytical Atomic Spectrometry, 2002, 17, 524-529.	3.0	14

#	Article	IF	CITATIONS
109	Vortex-assisted dispersive liquid–liquid microextraction for the determination of molybdenum in plants by inductively coupled plasma optical emission spectrometry. Analytical Methods, 2016, 8, 810-815.	2.7	14
110	Correction of matrix effects for As and Se in ICP OES using a Flow Blurring® multiple nebulizer. Journal of Analytical Atomic Spectrometry, 2012, 27, 2132.	3.0	13
111	Performance of the New Single-Bore High-Pressure Pneumatic Nebulizer (SBHPPN) in Plasma Atomic Emission Spectrometry. Applied Spectroscopy, 1994, 48, 573-580.	2.2	12
112	Application of internal standardization in ICP-QMS through discrete sample introduction methodologies. Journal of Analytical Atomic Spectrometry, 2003, 18, 1171.	3.0	12
113	Removal of Silver and Lead Ions from Water Wastes Using Azolla filiculoides, an Aquatic Plant, Which Adsorbs and Reduces the Ions into the Corresponding Metallic Nanoparticles Under Microwave Radiation in 5Âmin. Water, Air, and Soil Pollution, 2011, 218, 365-370.	2.4	12
114	Compensation of inorganic acid interferences in ICP-OES and ICP-MS using a Flow Blurring® multinebulizer. Journal of Analytical Atomic Spectrometry, 2014, 29, 1218-1227.	3.0	12
115	Insight into the interaction of the microwave radiation with droplets of interest in analytical chemistry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 333-342.	2.9	11
116	Elemental speciation by capillary electrophoresis with inductively coupled plasma spectrometry: A new approach by Flow Focusing® nebulization. Microchemical Journal, 2014, 117, 27-33.	4.5	11
117	Determination of calcium, iron and manganese in moss by automated discrete sampling flame atomic absorption spectrometry as an alternative to the ICP–MS analysis. Talanta, 2003, 59, 123-136.	5.5	10
118	Towards a calibration-less ICP-AES method for the determination of trace elements in aqueous solutions: Double ratio plasma diagnostics combined with an internal standard. Journal of Analytical Atomic Spectrometry, 2009, 24, 655.	3.0	10
119	Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images. Talanta, 2021, 229, 122298.	5.5	10
120	New, inexpensive and simple 3D printable device for nephelometric and fluorimetric determination based on smartphone sensing. RSC Advances, 2020, 10, 19713-19719.	3.6	9
121	Microwave-assisted solid phase extraction prior to ICP-MS determination of Pd and Pt in environmental and biological samples. International Journal of Environmental Analytical Chemistry, 2012, 92, 1106-1119.	3.3	8
122	Hydrofluoric distillation: a new approach to the determination of silicon, phosphorus and arsenic in siliceous materials. Analyst, The, 1986, 111, 965.	3.5	7
123	Elimination of nitric acid interference in ICP-AES by using a cyclonic spray chamber/Nafion membrane-based desolvation system. Journal of Analytical Atomic Spectrometry, 2002, 17, 219-226.	3.0	7
124	Dispersive liquid–liquid microextraction of Cd, Hg and Pb from medicines prior to ICP OES determination according to the United States Pharmacopeia. Analytical Methods, 2021, 13, 5670-5678.	2.7	7
125	Characterization of a new single-bore high-pressure pneumatic nebulizer for atomic spectrometry—II. Discrete sample introduction in flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1993, 48, 1461-1470.	2.9	6
126	Rapid Determination of Toxic Elements in Finger Paints by Microwave Assisted Acid Digestion and Atomic Spectrometry Detection. Analytical Letters, 1999, 32, 771-785.	1.8	6

#	Article	IF	CITATIONS
127	Flame atomic emission spectrometric determination of boron in methanolic solutions: influence of fluoride on the solute transport efficiency. Journal of Analytical Atomic Spectrometry, 1986, 1, 277.	3.0	5
128	MSIS-ĐœP-ĐĐ•S determination of As and Sb in complex matrices by magnetic nanoparticles-assisted hydride generation. Analytical Methods, 2021, 13, 1172-1180.	2.7	5
129	Fluoride interference in the molecular emission of boron in water/methanol media. Analytica Chimica Acta, 1985, 169, 377-383.	5.4	4
130	Fluoride interference on the boron inductively coupled plasma atomic emission in methanolic solutions. Journal of Analytical Atomic Spectrometry, 1987, 2, 379.	3.0	4
131	Reversed-phase dispersive liquid–liquid microextraction for elemental analysis of gasoline by inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2021, 36, 2338-2345.	3.0	4
132	Reference Measurements for Priority and Essential Trace Elements and Methyl Mercury with Isotope Dilution Inductively Coupled Plasma-Mass Spectrometry for Seafood Safety Assessment and CRM Production. Food Analytical Methods, 2020, 13, 390-402.	2.6	3
133	Sample Preparation for Chromatographic Analysis of Environmental Samples. Chromatographic Science, 2005, , 31-131.	0.1	2
134	A multinebulization technique for the determination of trace metals in a marine biota sample by on-line isotope dilution inductively coupled plasma mass spectrometry (OID-ICP-MS). Journal of Analytical Atomic Spectrometry, 2020, 35, 2509-2516.	3.0	2
135	Vitamin E determination in edible oils by reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes. Advances in Sample Preparation, 2022, 1, 100005.	3.0	2
136	Magnetic nanomaterials in analytical chemistry. Talanta, 2021, 235, 122762.	5.5	1
137	Application of magnetic nanomaterials in forensic chemistry. , 2021, , 191-210.		Ο