Marc Libault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1158399/publications.pdf Version: 2024-02-01

MARCHIRALIT

#	Article	IF	CITATIONS
1	First Plant Cell Atlas symposium report. Plant Direct, 2022, 6, .	1.9	1
2	Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Molecular Plant, 2021, 14, 372-383.	8.3	153
3	Plant Single-Cell Multiomics: Cracking the Molecular Profiles of Plant Cells. Trends in Plant Science, 2021, 26, 662-663.	8.8	16
4	Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics. Frontiers in Plant Science, 2021, 12, 696811.	3.6	8
5	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
6	Isolation of Plant Nuclei Compatible with Microfluidic Single-nucleus ATAC-sequencing. Bio-protocol, 2021, 11, e4240.	0.4	3
7	Isolation of Plant Root Nuclei for Single Cell RNA Sequencing. Current Protocols in Plant Biology, 2020, 5, e20120.	2.8	34
8	Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants. Plants, 2020, 9, 377.	3.5	8
9	Plant Hormones Differentially Control the Sub-Cellular Localization of Plasma Membrane Microdomains during the Early Stage of Soybean Nodulation. Genes, 2019, 10, 1012.	2.4	3
10	Transcriptional Reprogramming of Legume Genomes: Perspective and Challenges Associated With Single-Cell and Single Cell-Type Approaches During Nodule Development. Frontiers in Plant Science, 2018, 9, 1600.	3.6	4
11	Enhancing Phenotyping and Molecular Analysis of Plant Root System Using Ultrasound Aeroponic Technology. Current Protocols in Plant Biology, 2018, 3, e20078.	2.8	8
12	Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes, 2018, 9, 498.	2.4	25
13	The Gm <i>FWL1</i> (<i>FW2â€2â€like</i>) nodulation gene encodes a plasma membrane microdomainâ€associated protein. Plant, Cell and Environment, 2017, 40, 1442-1455.	5.7	23
14	Plant Systems Biology at the Single-Cell Level. Trends in Plant Science, 2017, 22, 949-960.	8.8	102
15	Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?. Plant Science, 2017, 263, 89-93.	3.6	25
16	Function of plasma membrane microdomain-associated proteins during legume nodulation. Plant Signaling and Behavior, 2017, 12, e1365215.	2.4	5
17	A comparative genomic and transcriptomic analysis at the level of isolated root hair cells reveals new conserved root hair regulatory elements. Plant Molecular Biology, 2017, 94, 641-655.	3.9	5
18	Gene Silencing of Argonaute5 Negatively Affects the Establishment of the Legume-Rhizobia Symbiosis. Genes, 2017, 8, 352.	2.4	19

Marc Libault

#	Article	IF	CITATIONS
19	Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses. BioMed Research International, 2016, 2016, 1-8.	1.9	10
20	Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process. Frontiers in Plant Science, 2016, 7, 34.	3.6	14
21	Editorial: Plant Single Cell Type Systems Biology. Frontiers in Plant Science, 2016, 7, 35.	3.6	7
22	ldentification and functional characterization of soybean root hair micro <scp>RNA</scp> s expressed in response to <i><scp>B</scp>radyrhizobium japonicum</i> infection. Plant Biotechnology Journal, 2016, 14, 332-341.	8.3	40
23	Plants Coping Abiotic and Biotic Stresses: A Tale of Diligent Management. BioMed Research International, 2015, 2015, 1-2.	1.9	8
24	A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiology, 2015, 168, 1433-1447.	4.8	88
25	Identification of micro RNA s and their mRNA targets during soybean nodule development: functional analysis of the role of miR393jâ€3p in soybean nodulation. New Phytologist, 2015, 207, 748-759.	7.3	82
26	Xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I do not have identical structures in soybean root and root hair cell walls. Planta, 2015, 242, 1123-1138.	3.2	16
27	The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration. BioMed Research International, 2014, 2014, 1-7.	1.9	21
28	The fate of duplicated genes in a polyploid plant genome. Plant Journal, 2013, 73, 143-153.	5.7	243
29	Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. Frontiers in Plant Science, 2013, 4, 484.	3.6	58
30	Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum. Molecular and Cellular Proteomics, 2012, 11, 1140-1155.	3.8	126
31	Identification of soybean proteins from a single cell type: The root hair. Proteomics, 2012, 12, 3365-3373.	2.2	29
32	Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genomics, 2012, 13, S15.	2.8	93
33	A Dual-Targeted Soybean Protein Is Involved in <i>Bradyrhizobium japonicum</i> Infection of Soybean Root Hair and Cortical Cells. Molecular Plant-Microbe Interactions, 2011, 24, 1051-1060.	2.6	10
34	A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant Journal, 2010, 62, 852-864.	5.7	83
35	An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant Journal, 2010, 63, no-no.	5.7	331
36	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854

Marc Libault

#	Article	IF	CITATIONS
37	Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes. Plant Signaling and Behavior, 2010, 5, 1226-1228.	2.4	28
38	Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to <i>Bradyrhizobium japonicum</i> Infection Â. Plant Physiology, 2010, 152, 541-552.	4.8	268
39	Soybean root hairs: A valuable system to investigate plant biology at the cellular level. Plant Signaling and Behavior, 2010, 5, 419-421.	2.4	8
40	Soybean Metabolites Regulated in Root Hairs in Response to the Symbiotic Bacterium <i>Bradyrhizobium japonicum</i> Â Â Â. Plant Physiology, 2010, 153, 1808-1822.	4.8	132
41	Root hair systems biology. Trends in Plant Science, 2010, 15, 641-650.	8.8	125
42	Legume Transcription Factor Genes: What Makes Legumes So Special? Â. Plant Physiology, 2009, 151, 991-1001.	4.8	87
43	Large-Scale Analysis of Putative Soybean Regulatory Gene Expression Identifies a <i>Myb</i> Gene Involved in Soybean Nodule Development Â. Plant Physiology, 2009, 151, 1207-1220.	4.8	58
44	Identification of 118 <i>Arabidopsis</i> Transcription Factor and 30 Ubiquitin-Ligase Genes Responding to Chitin, a Plant-Defense Elicitor. Molecular Plant-Microbe Interactions, 2007, 20, 900-911.	2.6	254
45	Genetics and functional genomics of legume nodulation. Current Opinion in Plant Biology, 2006, 9, 110-121.	7.1	264