Eric Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11579175/publications.pdf

Version: 2024-02-01

92 papers 6,323 citations

94433 37 h-index 78 g-index

94 all docs 94 docs citations

94 times ranked 5196 citing authors

#	Article	IF	CITATIONS
1	Serodolin, a \hat{l}^2 -arrestin \hat{a} "biased ligand of 5-HT ₇ receptor, attenuates pain-related behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
2	Receptors Thyroid-Stimulating Hormone/Luteinizing Hormone/Follicle-Stimulating Hormone Receptors., 2021,, 323-328.		O
3	Direct impact of gonadotropins on glucose uptake and storage in preovulatory granulosa cells: Implications in the pathogenesis of polycystic ovary syndrome. Metabolism: Clinical and Experimental, 2021, 115, 154458.	3.4	12
4	A Novel Mutation in the FSH Receptor (1423T) Affecting Receptor Activation and Leading to Primary Ovarian Failure. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e534-e550.	3.6	11
5	Accurate determination of epitope for antibodies with unknown 3D structures. MAbs, 2021, 13, 1961349.	5.2	8
6	\hat{l}^2 -Arrestins and Endocrine-Related GPCRs. , 2021, , 445-458.		0
7	In vitro effects of the endocrine disruptor p,p′DDT on human choriogonadotropin/luteinizing hormone receptor signalling. Archives of Toxicology, 2021, 95, 1671-1681.	4.2	11
8	Pharmacological Characterization of Low Molecular Weight Biased Agonists at the Follicle Stimulating Hormone Receptor. International Journal of Molecular Sciences, 2021, 22, 9850.	4.1	7
9	Pharmacological Programming of Endosomal Signaling Activated by Small Molecule Ligands of the Follicle Stimulating Hormone Receptor. Frontiers in Pharmacology, 2020, 11, 593492.	3.5	12
10	FSH for the Treatment of Male Infertility. International Journal of Molecular Sciences, 2020, 21, 2270.	4.1	38
11	Follicle-Stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. Journal of Clinical Medicine, 2020, 9, 1014.	2.4	61
12	Membrane Estrogen Receptor (GPER) and Follicle-Stimulating Hormone Receptor (FSHR) Heteromeric Complexes Promote Human Ovarian Follicle Survival. IScience, 2020, 23, 101812.	4.1	29
13	Glycosylation Pattern and in vitro Bioactivity of Reference Follitropin alfa and Biosimilars. Frontiers in Endocrinology, 2019, 10, 503.	3.5	19
14	Biased Signaling and Allosteric Modulation at the FSHR. Frontiers in Endocrinology, 2019, 10, 148.	3.5	26
15	Methods to Determine Interaction Interfaces Between \hat{l}^2 -Arrestins and Their Protein Partners. Methods in Molecular Biology, 2019, 1957, 177-194.	0.9	0
16	Workflow Description to Dynamically Model \hat{l}^2 -Arrestin Signaling Networks. Methods in Molecular Biology, 2019, 1957, 195-215.	0.9	1
17	G proteinâ€dependent signaling triggers a βâ€arrestinâ€scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation. FASEB Journal, 2018, 32, 1154-1169.	0.5	24
18	Manifold roles of \hat{l}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	3.6	169

#	Article	IF	Citations
19	MAbTope: A Method for Improved Epitope Mapping. Journal of Immunology, 2018, 201, 3096-3105.	0.8	26
20	A logic-based method to build signaling networks and propose experimental plans. Scientific Reports, 2018, 8, 7830.	3.3	4
21	Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. International Review of Cell and Molecular Biology, 2018, 338, 1-58.	3.2	23
22	FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology, 2018, 159, 3020-3035.	2.8	78
23	Advances in computational modeling approaches of pituitary gonadotropin signaling. Expert Opinion on Drug Discovery, 2018, 13, 799-813.	5.0	4
24	G Protein-Coupled Receptors As Regulators of Localized Translation: The Forgotten Pathway?. Frontiers in Endocrinology, 2018, 9, 17.	3.5	4
25	\hat{I}^2 -arrestins and biased signaling in gonadotropin receptors. Minerva Ginecologica, 2018, 70, 525-538.	0.8	14
26	\hat{l}^2 -arrestin signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology, 2017, 449, 28-41.	3.2	40
27	Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs, 2017, 9, 735-741.	5.2	19
28	Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Scientific Reports, 2017, 7, 940.	3.3	91
29	Heterogeneous hCG and hMG commercial preparations result in different intracellular signalling but induce a similar long-term progesterone response in vitro. Molecular Human Reproduction, 2017, 23, 685-697.	2.8	24
30	Integration of GPCR Signaling and Sorting from Very Early Endosomes via Opposing APPL1 Mechanisms. Cell Reports, 2017, 21, 2855-2867.	6.4	88
31	A Comprehensive View of the Î ² -Arrestinome. Frontiers in Endocrinology, 2017, 8, 32.	3.5	29
32	Phosphorylation of \hat{l}^2 -arrestin2 at Thr383 by MEK underlies \hat{l}^2 -arrestin-dependent activation of Erk1/2 by GPCRs. ELife, 2017, 6, .	6.0	53
33	Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing. Frontiers in Cell and Developmental Biology, 2016, 4, 76.	3.7	16
34	Identification of the epidermal growth factor receptor as the receptor for ⟨i⟩Salmonella⟨/i⟩ Rck–dependent invasion. FASEB Journal, 2016, 30, 4180-4191.	0.5	44
35	Eculizumab epitope on complement C5: Progress towards a better understanding of the mechanism of action. Molecular Immunology, 2016, 77, 126-131.	2.2	21
36	Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Molecular and Cellular Endocrinology, 2016, 436, 10-22.	3.2	41

#	Article	IF	Citations
37	\hat{l}^2 -arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Molecular and Cellular Endocrinology, 2016, 437, 11-21.	3.2	63
38	Unraveling the molecular architecture of a G protein-coupled receptor/ \hat{l}^2 -arrestin/Erk module complex. Scientific Reports, 2015, 5, 10760.	3.3	50
39	Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays. Frontiers in Endocrinology, 2015, 6, 130.	3.5	7 5
40	Screening and discovery of nitro-benzoxadiazole compounds activating epidermal growth factor receptor (EGFR) in cancer cells. Scientific Reports, 2015, 4, 3977.	3.3	15
41	Computational Models to Decipher Cell-Signaling Pathways. , 2014, , 269-284.		2
42	Biased signalling in follicle stimulating hormone action. Molecular and Cellular Endocrinology, 2014, 382, 452-459.	3.2	54
43	Constitutive Activity in Gonadotropin Receptors. Advances in Pharmacology, 2014, 70, 37-80.	2.0	29
44	Activation of a GPCR leads to eIF4G phosphorylation at the $5\hat{a} \in \mathbb{Z}^2$ cap and to IRES-dependent translation. Journal of Molecular Endocrinology, 2014, 52, 373-382.	2.5	9
45	Trafficking of the Follitropin Receptor. Methods in Enzymology, 2013, 521, 17-45.	1.0	18
46	Semi-quantitative measurement of specific proteins in human cumulus cells using reverse phase protein array. Reproductive Biology and Endocrinology, 2013, 11, 100.	3.3	6
47	Integrating microRNAs into the complexity of gonadotropin signaling networks. Frontiers in Cell and Developmental Biology, 2013, $1,3$.	3.7	9
48	Normal testicular function without detectable follicle-stimulating hormone. A novel mutation in the follicle-stimulating hormone receptor gene leading to apparent constitutive activity and impaired agonist-induced desensitization and internalization. Molecular and Cellular Endocrinology, 2012, 364, 71-82.	3.2	50
49	mRNA-Selective Translation Induced by FSH in Primary Sertoli Cells. Molecular Endocrinology, 2012, 26, 669-680.	3.7	29
50	Competing G proteinâ€coupled receptor kinases balance G protein and βâ€arrestin signaling. Molecular Systems Biology, 2012, 8, 590.	7.2	77
51	Molecular Mechanism of \hat{I}^2 -Arrestin-Biased Agonism at Seven-Transmembrane Receptors. Annual Review of Pharmacology and Toxicology, 2012, 52, 179-197.	9.4	536
52	Preferential \hat{l}^2 -arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189 V mutationa \hat{l} . Molecular and Cellular Endocrinology, 2011, 331, 109-118.	3.2	107
53	Mapping the follicle-stimulating hormone-induced signaling networks. Frontiers in Endocrinology, 2011, 2, 45.	3.5	130
54	Novel pathways in gonadotropin receptor signaling and biased agonism. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 259-274.	5.7	59

#	Article	IF	Citations
55	GPCR signalling to the translation machinery. Cellular Signalling, 2010, 22, 707-716.	3 . 6	38
56	Selective Modulation of Follicle-Stimulating Hormone Signaling Pathways with Enhancing Equine Chorionic Gonadotropin/Antibody Immune Complexes. Endocrinology, 2010, 151, 2788-2799.	2.8	25
57	Partially Deglycosylated Equine LH Preferentially Activates Î ² -Arrestin-Dependent Signaling at the Follicle-Stimulating Hormone Receptor. Molecular Endocrinology, 2010, 24, 561-573.	3.7	46
58	FSH-stimulated PTEN activity accounts for the lack of FSH mitogenic effect in prepubertal rat Sertoli cells. Molecular and Cellular Endocrinology, 2010, 315, 271-276.	3.2	32
59	Developmental regulation of p70 S6 kinase by a G protein-coupled receptor dynamically modelized in primary cells. Cellular and Molecular Life Sciences, 2009, 66, 3487-3503.	5 . 4	48
60	A highly sensitive nearâ€infrared fluorescent detection method to analyze signalling pathways by reverseâ€phase protein array. Proteomics, 2009, 9, 5446-5454.	2.2	29
61	\hat{l}^2 -arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO Journal, 2009, 28, 2706-2718.	7.8	62
62	Towards a systems biology approach of G protein-coupled receptor signalling: Challenges and expectations. Comptes Rendus - Biologies, 2009, 332, 947-957.	0.2	22
63	Dimeric Transferrin Inhibits Phagocytosis of Residual Bodies by Testicular Rat Sertoli Cells1. Biology of Reproduction, 2008, 78, 697-704.	2.7	24
64	Physical Interaction of Calmodulin with the 5-Hydroxytryptamine _{2C} Receptor C-Terminus Is Essential for G Protein-independent, Arrestin-dependent Receptor Signaling. Molecular Biology of the Cell, 2008, 19, 4640-4650.	2.1	88
65	5-Hydroxytryptamine4 Receptor Activation of the Extracellular Signal-regulated Kinase Pathway Depends on Src Activation but Not on G Protein or β-Arrestin Signaling. Molecular Biology of the Cell, 2007, 18, 1979-1991.	2.1	68
66	Dichlorodiphenyltrichloroethane impairs follicle-stimulating hormone receptor-mediated signaling in rat Sertoli cells. Reproductive Toxicology, 2007, 23, 158-164.	2.9	10
67	GRKs and \hat{l}^2 -arrestins: roles in receptor silencing, trafficking and signaling. Trends in Endocrinology and Metabolism, 2006, 17, 159-165.	7.1	572
68	Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization. Reproductive Biology and Endocrinology, 2006, 4, 33.	3.3	22
69	A Phosphorylation Cluster of Five Serine and Threonine Residues in the C-Terminus of the Follicle-Stimulating Hormone Receptor Is Important for Desensitization But Not for β-Arrestin-Mediated ERK Activation. Molecular Endocrinology, 2006, 20, 3014-3026.	3.7	147
70	G protein-coupled receptor kinase 2 and \hat{l}^2 -arrestins are recruited to FSH receptor in stimulated rat primary Sertoli cells. Journal of Endocrinology, 2006, 190, 341-350.	2.6	28
71	Distinct \hat{l}^2 -Arrestin- and G Protein-dependent Pathways for Parathyroid Hormone Receptor-stimulated ERK1/2 Activation. Journal of Biological Chemistry, 2006, 281, 10856-10864.	3.4	422
72	\hat{l}^2 -Arrestin-dependent, G Protein-independent ERK1/2 Activation by the \hat{l}^2 2 Adrenergic Receptor. Journal of Biological Chemistry, 2006, 281, 1261-1273.	3.4	651

#	Article	IF	CITATIONS
73	Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reproduction, Nutrition, Development, 2005, 45, 101-108.	1.9	43
74	Follicle-Stimulating Hormone Activates p70 Ribosomal Protein S6 Kinase by Protein Kinase A-Mediated Dephosphorylation of Thr 421/Ser 424 in Primary Sertoli Cells. Molecular Endocrinology, 2005, 19, 1812-1820.	3.7	49
75	Functional antagonism of different G protein-coupled receptor kinases for Â-arrestin-mediated angiotensin II receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1442-1447.	7.1	318
76	Different G protein-coupled receptor kinases govern G protein and Â-arrestin-mediated signaling of V2 vasopressin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1448-1453.	7.1	298
77	\hat{l}^2 -Arrestin 2-Dependent Angiotensin II Type 1A Receptor-Mediated Pathway of Chemotaxis. Molecular Pharmacology, 2005, 67, 1229-1236.	2.3	115
78	\hat{l}^2 -Arrestin 1 and $\hat{G} \pm q/11$ Coordinately Activate RhoA and Stress Fiber Formation following Receptor Stimulation. Journal of Biological Chemistry, 2005, 280, 8041-8050.	3.4	180
79	A Mechanistic Overview on Male Infertility and Germ Cell Cancers. Current Pharmaceutical Design, 2004, 10, 449-469.	1.9	3
80	Prostate., 2003,, 591-605.		1
81	G Protein-Coupled Receptor Kinases and Beta Arrestins Are Relocalized and Attenuate Cyclic $3\hat{a}\in^2$, $5\hat{a}\in^2$ -Adenosine Monophosphate Response to Follicle-Stimulating Hormone in Rat Primary Sertoli Cells 1. Biology of Reproduction, 2002, 66, 70-76.	2.7	42
82	Kinase-Inactive G-Protein-Coupled Receptor Kinases Are Able to Attenuate Follicle-Stimulating Hormone-Induced Signaling. Biochemical and Biophysical Research Communications, 2001, 282, 71-78.	2.1	30
83	The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene, 2001, 20, 4696-4709.	5.9	184
84	A Novel Messenger Ribonucleic Acid Homologous to Human MAGE-D Is Strongly Expressed in Rat Sertoli Cells and Weakly in Leydig Cells and Is Regulated by Follitropin, Lutropin, and Prolactin 1. Endocrinology, 2000, 141, 3821-3831.	2.8	14
85	Involvement of G Protein-Coupled Receptor Kinases and Arrestins in Desensitization to Follicle-Stimulating Hormone Action. Molecular Endocrinology, 1999, 13, 1599-1614.	3.7	72
86	Effects of pituitary hormones on the prostate. , 1999, 38, 159-165.		70
87	Involvement of G Protein-Coupled Receptor Kinases and Arrestins in Desensitization to Follicle-Stimulating Hormone Action. Molecular Endocrinology, 1999, 13, 1599-1614.	3.7	17
88	\hat{l}^22 adrenergic receptors mediate cAMP, tissue-type plasminogen activator and transferrin production in rat Sertoli cells. Molecular and Cellular Endocrinology, 1998, 142, 75-86.	3.2	23
89	Rat G Protein-Coupled Receptor Kinase GRK4: Identification, Functional Expression, and Differential Tissue Distribution of Two Splice Variants*. Endocrinology, 1998, 139, 2784-2795.	2.8	54
90	Luteinizing Hormone Increases the Abundance of Various Transcripts, Independently of the Androgens, in the Rat Prostate. Biochemical and Biophysical Research Communications, 1997, 233, 108-112.	2.1	7

ERIC REITER

#	Article	IF	CITATIONS
91	Androgen-independent effects of prolactin on the different lobes of the immature rat prostate. Molecular and Cellular Endocrinology, 1995, 112, 113-122.	3.2	30
92	Growth hormone and prolactin stimulate androgen receptor, insulin-like growth factor-I (IGF-I) and IGF-I receptor levels in the prostate of immature rats. Molecular and Cellular Endocrinology, 1992, 88, 77-87.	3.2	69