Christian Wurzbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1157534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 wastewater surveillance in Germany: Long-term RT-digital droplet PCR monitoring, suitability of primer/probe combinations and biomarker stability. Water Research, 2022, 210, 117977.	11.3	40
2	The curse of the uncultured fungus. MycoKeys, 2022, 86, 177-194.	1.9	9
3	Large-scale sampling of the freshwater microbiome suggests pollution-driven ecosystem changes. Environmental Pollution, 2022, 308, 119627.	7.5	7
4	Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. ISME Journal, 2022, 16, 2242-2254.	9.8	19
5	Single dominant diatom can host diverse parasitic fungi with different degree of host specificity. Limnology and Oceanography, 2021, 66, 667-677.	3.1	16
6	Microbial retention and resistances in stormwater quality improvement devices treating road runoff. FEMS Microbes, 2021, 2, .	2.1	1
7	SARS-CoV-2 Crisis Management With a Wastewater Early-Warning System in the Bavarian District of Berchtesgadener Land, Germany. Deutsches Ärzteblatt International, 2021, 118, 479-480.	0.9	1
8	Declining fungal diversity in Arctic freshwaters along a permafrost thaw gradient. Global Change Biology, 2021, 27, 5889-5906.	9.5	10
9	Community composition of aquatic fungi across the thawing Arctic. Scientific Data, 2021, 8, 221.	5.3	0
10	Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Diversity, 2021, 109, 59-98.	12.3	35
11	Long rDNA amplicon sequencing of insect-infecting nephridiophagids reveals their affiliation to the Chytridiomycota and a potential to switch between hosts. Scientific Reports, 2021, 11, 396.	3.3	12
12	Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica. Journal of Fungi (Basel, Switzerland), 2021, 7, 854.	3.5	6
13	Reducing the Impacts of Biofouling in RO Membrane Systems through In Situ Low Fluence Irradiation Employing UVC-LEDs. Membranes, 2020, 10, 415.	3.0	10
14	Archaea in boreal Swedish lakes are diverse, dominated by Woesearchaeota and follow deterministic community assembly. Environmental Microbiology, 2020, 22, 3158-3171.	3.8	19
15	Fungal communities in groundwater springs along the volcanic zone of Iceland. Inland Waters, 2020, 10, 418-427.	2.2	9
16	Combining the 5.8S and ITS2 to improve classification of fungi. Methods in Ecology and Evolution, 2019, 10, 1702-1711.	5.2	27
17	A Salinity Threshold Separating Fungal Communities in the Baltic Sea. Frontiers in Microbiology, 2019, 10, 680.	3.5	47
18	Fungi in aquatic ecosystems. Nature Reviews Microbiology, 2019, 17, 339-354.	28.6	266

CHRISTIAN WURZBACHER

#	Article	IF	CITATIONS
19	Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 2019, 17, 95-109.	28.6	580
20	Introducing ribosomal tandem repeat barcoding for fungi. Molecular Ecology Resources, 2019, 19, 118-127.	4.8	78
21	Mycobiomes of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) – a case study reveals clear tissue preferences and differences in diversity and composition. Mycological Progress, 2018, 17, 489-500.	1.4	7
22	Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK). MycoKeys, 2018, 28, 65-82.	1.9	33
23	Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds. ISME Journal, 2017, 11, 1938-1941.	9.8	32
24	DNA metabarcoding of unfractionated water samples relates phytoâ€, zoo†and bacterioplankton dynamics and reveals a singleâ€taxon bacterial bloom. Environmental Microbiology Reports, 2017, 9, 383-388.	2.4	13
25	Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. Microbiome, 2017, 5, 41.	11.1	60
26	Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology, 2017, 19, 3802-3822.	3.8	171
27	Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Scientific Reports, 2017, 7, 15348.	3.3	77
28	Metaxa2 Diversity Tools: Easing microbial community analysis with Metaxa2. Ecological Informatics, 2016, 33, 45-50.	5.2	30
29	Effects of FPOM size and quality on aquatic heterotrophic bacteria. Limnologica, 2016, 59, 109-115.	1.5	7
30	Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecology, 2016, 19, 28-38.	1.6	183
31	Effects of Light and Autochthonous Carbon Additions on Microbial Turnover of Allochthonous Organic Carbon and Community Composition. Microbial Ecology, 2015, 69, 361-371.	2.8	17
32	Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140130.	4.0	107
33	Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada. F1000Research, 2015, 4, 1378.	1.6	11
34	Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada. F1000Research, 2015, 4, 1378.	1.6	11
35	Importance of Saprotrophic Freshwater Fungi for Pollen Degradation. PLoS ONE, 2014, 9, e94643.	2.5	110
36	Distribution of <scp>acl</scp> â€ <scp>A</scp> ctinorhodopsin genes in <scp>B</scp> altic <scp>S</scp> ea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters. Environmental Microbiology, 2014, 16, 586-597.	3.8	19

CHRISTIAN WURZBACHER

#	Article	IF	CITATIONS
37	Preconditioning of leaves by solar radiation and anoxia affects microbial colonisation and rate of leaf mass loss in an intermittent stream. Freshwater Biology, 2013, 58, 1918-1931.	2.4	23
38	Improved detection and identification of aquatic fungi and chitin in aquatic environments. Mycologia, 2012, 104, 1267-1271.	1.9	16
39	Environmental actinorhodopsin expression revealed by a new <i>in situ</i> filtration and fixation sampler. Environmental Microbiology Reports, 2012, 4, 491-497.	2.4	18
40	Effects of pollen leaching and microbial degradation on organic carbon and nutrient availability in lake water. Aquatic Sciences, 2012, 74, 87-99.	1.5	35
41	Top 50 most wanted fungi. MycoKeys, 0, 12, 29-40.	1.9	72
42	Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi (Agaricomycetes, Basidiomycota). MycoKeys, 0, 13, 21-33.	1.9	8
43	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
44	High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys, 0, 16, 17-44.	1.9	68
45	Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys, 0, 25, 31-50.	1.9	14
46	Read quality-based trimming of the distal ends of public fungal DNA sequences is nowhere near satisfactory. MycoKeys, 0, 26, 13-24.	1.9	10
47	Evidence for further non-coding RNA genes in the fungal rDNA region. MycoKeys, 0, 90, 203-213.	1.9	3