List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11573021/publications.pdf Version: 2024-02-01

MADE C. DACKARD

#	Article	IF	CITATIONS
1	Learning and Memory Functions of the Basal Ganglia. Annual Review of Neuroscience, 2002, 25, 563-593.	10.7	1,609
2	Inactivation of Hippocampus or Caudate Nucleus with Lidocaine Differentially Affects Expression of Place and Response Learning. Neurobiology of Learning and Memory, 1996, 65, 65-72.	1.9	1,307
3	Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia, 2003, 41, 245-251.	1.6	808
4	Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems Behavioral Neuroscience, 1992, 106, 439-446.	1.2	598
5	Amygdala Is Critical for Stress-Induced Modulation of Hippocampal Long-Term Potentiation and Learning. Journal of Neuroscience, 2001, 21, 5222-5228.	3.6	479
6	Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists Behavioral Neuroscience, 1991, 105, 295-306.	1.2	403
7	Amygdala Modulation of Multiple Memory Systems: Hippocampus and Caudate-Putamen. Neurobiology of Learning and Memory, 1998, 69, 163-203.	1.9	287
8	The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1997, 21, 1-22.	4.8	238
9	Affective modulation of multiple memory systems. Current Opinion in Neurobiology, 2001, 11, 752-756.	4.2	238
10	Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Research Bulletin, 1994, 33, 445-452.	3.0	211
11	Posttraining Estrogen and Memory Modulation. Hormones and Behavior, 1998, 34, 126-139.	2.1	189
12	Posttraining Estradiol Injections Enhance Memory in Ovariectomized Rats: Cholinergic Blockade and Synergism. Neurobiology of Learning and Memory, 1997, 68, 172-188.	1.9	166
13	Factors that influence the relative use of multiple memory systems. Hippocampus, 2013, 23, 1044-1052.	1.9	161
14	Anxiety, cognition, and habit: A multiple memory systems perspective. Brain Research, 2009, 1293, 121-128.	2.2	160
15	Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentanoic acid Behavioral Neuroscience, 1997, 111, 543-551.	1.2	149
16	Intra-hippocampal estradiol infusion enhances memory in ovariectomized rats. NeuroReport, 1997, 8, 3009-3013.	1.2	148
17	Amygdala and "emotional―modulation of the relative use of multiple memory systems. Neurobiology of Learning and Memory, 2004, 82, 243-252.	1.9	144
18	Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacology, 1991, 103, 271-276.	3.1	140

#	Article	IF	CITATIONS
19	Postâ€ŧraining reversible inactivation of hippocampus reveals interference between memory systems. Hippocampus, 2002, 12, 280-284.	1.9	138
20	Dissociation of memory systems: The story unfolds Behavioral Neuroscience, 2013, 127, 813-834.	1.2	138
21	Post-Training Cyclooxygenase-2 (COX-2) Inhibition Impairs Memory Consolidation. Learning and Memory, 2002, 9, 41-47.	1.3	135
22	Memory facilitation produced by dopamine agonists: Role of receptor subtype and mnemonic requirements. Pharmacology Biochemistry and Behavior, 1989, 33, 511-518.	2.9	134
23	Testosterone has rewarding affective properties in male rats: Implications for the biological basis of sexual motivation Behavioral Neuroscience, 1994, 108, 424-428.	1.2	134
24	Posttraining intrahippocampal estradiol injections enhance spatial memory in male rats: Interaction with cholinergic systems Behavioral Neuroscience, 1996, 110, 626-632.	1.2	123
25	Rewarding affective properties of intra-nucleus accumbens injections of testosterone Behavioral Neuroscience, 1997, 111, 219-224.	1.2	114
26	Habit Learning in Tourette Syndrome. Archives of General Psychiatry, 2004, 61, 1259.	12.3	114
27	Lesions of the caudate nucleus selectively impair "reference memory―acquisition in the radial maze. Behavioral and Neural Biology, 1990, 53, 39-50.	2.2	96
28	Memory Systems and the Addicted Brain. Frontiers in Psychiatry, 2016, 7, 24.	2.6	96
29	The amygdala and emotional modulation of competition between cognitive and habit memory. Behavioural Brain Research, 2008, 193, 126-131.	2.2	94
30	Expression of Testosterone Conditioned Place Preference Is Blocked by Peripheral or Intra-accumbens Injection of α-Flupenthixol. Hormones and Behavior, 1998, 34, 39-47.	2.1	92
31	Role of dopamine receptor subtypes in the acquisition of a testosterone conditioned place preference in rats. Neuroscience Letters, 2000, 282, 17-20.	2.1	89
32	Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 2012, 6, 14.	2.0	84
33	Exhumed from thought: Basal ganglia and response learning in the plus-maze. Behavioural Brain Research, 2009, 199, 24-31.	2.2	82
34	The amygdala mediates memory consolidation for an amphetamine conditioned place preference. Behavioural Brain Research, 2002, 129, 93-100.	2.2	78
35	Intra-amygdala anxiogenic drug infusion prior to retrieval biases rats towards the use of habit memory. Neurobiology of Learning and Memory, 2008, 90, 616-623.	1.9	78
36	Emotional modulation of multiple memory systems: implications for the neurobiology of post-traumatic stress disorder. Reviews in the Neurosciences, 2012, 23, 627-43.	2.9	78

#	Article	IF	CITATIONS
37	Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks. Neurobiology of Learning and Memory, 2005, 84, 75-84.	1.9	75
38	Annual Research Review: The neurobehavioral development of multiple memory systems – implications for childhood and adolescent psychiatric disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2014, 55, 582-610.	5.2	74
39	Post-training injection of the acetylcholine M2 receptor antagonist AF-DX 116 improves memory. Brain Research, 1990, 524, 72-76.	2.2	73
40	Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochemistry International, 1997, 30, 225-231.	3.8	70
41	Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 2003, 17, 1482-1488.	2.6	69
42	Exposure to predator odor influences the relative use of multiple memory systems: Role of basolateral amygdala. Neurobiology of Learning and Memory, 2014, 109, 56-61.	1.9	64
43	Amygdala modulates memory for changes in reward magnitude: Reversible post-training inactivation with lidocaine attenuates the response to a reduction in reward. Behavioural Brain Research, 1993, 59, 153-159.	2.2	63
44	Posttraining Injections of MK-801 Produce a Time-Dependent Impairment of Memory in Two Water Maze Tasks. Neurobiology of Learning and Memory, 1997, 68, 42-50.	1.9	61
45	Effects of Intrastriatal Injections of Platelet-Activating Factor and the PAF Antagonist BN 52021 on Memory. Neurobiology of Learning and Memory, 1996, 66, 176-182.	1.9	57
46	The influence of cannabinoids on learning and memory processes of the dorsal striatum. Neurobiology of Learning and Memory, 2015, 125, 1-14.	1.9	56
47	Memory enhancement by post-training peripheral administration of low doses of dopamine agonists: Possible autoreceptor effect. Behavioral and Neural Biology, 1993, 59, 230-241.	2.2	54
48	Interaction of cholinergic-dopaminergic systems in the regulation of memory storage in aversively motivated learning tasks. Brain Research, 1993, 627, 72-78.	2.2	54
49	Facilitation of Memory for Extinction of Drug-Induced Conditioned Reward: Role of Amygdala and Acetylcholine. Learning and Memory, 2004, 11, 641-647.	1.3	54
50	A virtual reality-based FMRI study of reward-based spatial learning. Neuropsychologia, 2010, 48, 2912-2921.	1.6	51
51	Habit learning and memory in mammals: Behavioral and neural characteristics. Neurobiology of Learning and Memory, 2014, 114, 198-208.	1.9	51
52	Reward-Based Spatial Learning in Unmedicated Adults With Obsessive-Compulsive Disorder. American Journal of Psychiatry, 2015, 172, 383-392.	7.2	48
53	Posttraining intra-basolateral amygdala scopolamine impairs food- and amphetamine-induced conditioned place preferences Behavioral Neuroscience, 2002, 116, 922-927.	1.2	47
54	Medial prefrontal cortex infusions of bupivacaine or AP-5 block extinction of amphetamine conditioned place preference. Neurobiology of Learning and Memory, 2008, 89, 504-512.	1.9	45

#	Article	IF	CITATIONS
55	Quinpirole and d-amphetamine administration posttraining enhances memory on spatial and cued discriminations in a water maze. Cognitive, Affective and Behavioral Neuroscience, 1994, 22, 54-60.	1.3	43
56	Effect of posttraining injections of glucose on acquisition of two appetitive learning tasks. Cognitive, Affective and Behavioral Neuroscience, 1990, 18, 282-286.	1.3	42
57	The projections of the retrorubral field A8 to the hippocampal formation in the rat. Experimental Brain Research, 1996, 112, 244-52.	1.5	41
58	Stria Terminalis Lesions Attenuate Memory Enhancement Produced by Intracaudate Nucleus Injections of Oxotremorine. Neurobiology of Learning and Memory, 1996, 65, 278-282.	1.9	37
59	Affective properties of intra-medial preoptic area injections of testosterone in male rats. Neuroscience Letters, 1999, 269, 149-152.	2.1	37
60	Perceptual-motor skill learning in Gilles de la Tourette syndromeEvidence for multiple procedural learning and memory systems. Neuropsychologia, 2005, 43, 1456-1465.	1.6	36
61	Changes in corticostriatal connectivity during reinforcement learning in humans. Human Brain Mapping, 2015, 36, 793-803.	3.6	34
62	Enhancement of striatum-dependent memory by conditioned fear is mediated by beta-adrenergic receptors in the basolateral amygdala. Neurobiology of Stress, 2016, 3, 74-82.	4.0	31
63	Neural Correlates of Reward-Based Spatial Learning in Persons with Cocaine Dependence. Neuropsychopharmacology, 2014, 39, 545-555.	5.4	30
64	Effects of Posttraining Intrahippocampal Injections of Platelet-Activating Factor and PAF Antagonists on Memory. Neurobiology of Learning and Memory, 1998, 70, 349-363.	1.9	29
65	D-Cycloserine enhances memory consolidation of hippocampus-dependent latent extinction. Learning and Memory, 2007, 14, 468-471.	1.3	29
66	Posttraining intra-basolateral amygdala scopolamine impairs food- and amphetamine-induced conditioned place preferences Behavioral Neuroscience, 2002, 116, 922-927.	1.2	29
67	Buspirone blocks the enhancing effect of the anxiogenic drug RS 79948-197 on consolidation of habit memory. Behavioural Brain Research, 2012, 234, 299-302.	2.2	26
68	Post-training re-exposure to fear conditioned stimuli enhances memory consolidation and biases rats toward the use of dorsolateral striatum-dependent response learning. Behavioural Brain Research, 2015, 291, 195-200.	2.2	26
69	Evidence of a role for multiple memory systems in behavioral extinction. Neurobiology of Learning and Memory, 2006, 85, 289-299.	1.9	23
70	The basolateral amygdala is a cofactor in memory enhancement produced by intrahippocampal glutamate injections. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 377-385.	1.3	23
71	Dissociation of multiple memory systems by posttraining intracerebral injections of glutamate. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 40-50.	1.3	22
72	Differential Interaction of Platelet-Activating Factor and NMDA Receptor Function in Hippocampal and Dorsal Striatal Memory Processes. Neurobiology of Learning and Memory, 2001, 75, 310-324.	1.9	20

#	Article	IF	CITATIONS
73	Differential effects of massed and spaced training on place and response learning: A memory systems perspective. Behavioural Processes, 2015, 118, 85-89.	1.1	20
74	Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum. Neuroscience, 2017, 352, 216-225.	2.3	20
75	The role of the dorsal striatum in extinction: A memory systems perspective. Neurobiology of Learning and Memory, 2018, 150, 48-55.	1.9	20
76	The dorsolateral striatum selectively mediates extinction of habit memory. Neurobiology of Learning and Memory, 2016, 136, 54-62.	1.9	19
77	Differential effects of intra-amygdala lidocaine infusion on memory consolidation and expression of a food conditioned place preference. Cognitive, Affective and Behavioral Neuroscience, 2000, 28, 486-491.	1.3	17
78	Cocaine self-administration alters the relative effectiveness of multiple memory systems during extinction. Learning and Memory, 2009, 16, 296-299.	1.3	15
79	The Memory System Engaged During Acquisition Determines the Effectiveness of Different Extinction Protocols. Frontiers in Behavioral Neuroscience, 2015, 9, 314.	2.0	13
80	Emotional modulation of habit memory: neural mechanisms and implications for psychopathology. Current Opinion in Behavioral Sciences, 2018, 20, 25-32.	3.9	13
81	There Is More Than One Kind of Extinction Learning. Frontiers in Systems Neuroscience, 2019, 13, 16.	2.5	10
82	Hippocampus NMDA receptors selectively mediate latent extinction of place learning. Hippocampus, 2016, 26, 1115-1123.	1.9	9
83	Task-Dependent Role for Dorsal Striatum Metabotropic Glutamate Receptors in Memory. Learning and Memory, 2001, 8, 96-103.	1.3	8
84	The caudate nucleus and acquisition of win-shift radial-maze behavior: Effect of exposure to the reinforcer during maze adaptation. Cognitive, Affective and Behavioral Neuroscience, 1992, 20, 127-132.	1.3	8
85	Enhancement of win-shift radial maze retention by peripheral posttraining administration of d-amphetamine and 4-OH amphetamine. Cognitive, Affective and Behavioral Neuroscience, 1992, 20, 280-285.	1.3	7
86	Role of Basal Ganglia in Habit Learning and Memory. Handbook of Behavioral Neuroscience, 2010, , 561-569.	0.7	6
87	Differential effects of neural inactivation of the dorsolateral striatum on response and latent extinction Behavioral Neuroscience, 2017, 131, 143-148.	1.2	6
88	Neural systems and the emotion-memory link. Neurobiology of Learning and Memory, 2021, 185, 107503.	1.9	3
89	Amygdala and Emotional Modulation of Multiple Memory Systems. , 2017, , .		2
90	Behavioral and Neural Mechanisms of Latent Extinction: A Historical Review. Neuroscience, 2022, 497, 157-170.	2.3	1

#	Article	lF	CITATIONS
91	Dissociating multiple memory systems: Don't forsake the brain. Behavioral and Brain Sciences, 1994, 17, 414-415.	0.7	Ο
92	Neurobiology of Procedural Learning in Animals â~†. , 2017, , 313-326.		0
93	Multiple Memory Systems. , 2022, , 118-122.		0