
Glenn Randall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1157209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Multifunctional Neutralizing Antibodyâ€Conjugated Nanoparticle Inhibits and Inactivates SARSâ€CoVâ€2. Advanced Science, 2022, 9, e2103240.	11.2	16
2	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances, 2022, 8, .	10.3	77
3	A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. Journal of the American Society of Nephrology: JASN, 2022, 33, 1293-1307.	6.1	26
4	The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection. Journal of Biological Chemistry, 2022, 298, 101956.	3.4	2
5	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses Science Advances, 2022, , eabi6110.	10.3	11
6	Three-Dimensional Cell Culture Systems for Studying Hepatitis C Virus. Viruses, 2021, 13, 211.	3.3	6
7	A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. Journal of the American Society of Nephrology: JASN, 2021, 32, 795-803.	6.1	82
8	Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Communications Biology, 2021, 4, 193.	4.4	85
9	Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature Communications, 2021, 12, 743.	12.8	297
10	Nanotraps for the containment and clearance of SARS-CoV-2. Matter, 2021, 4, 2059-2082.	10.0	38
11	Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Central Science, 2021, 7, 1368-1380.	11.3	21
12	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	12.6	173
13	Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials, 2021, 278, 121159.	11.4	23
14	Liver-expressed <i>Cd302</i> and <i>Cr1l</i> limit hepatitis C virus cross-species transmission to mice. Science Advances, 2020, 6, .	10.3	23
15	CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. Journal of Virology, 2020, 94, .	3.4	3
16	Virus Impact on Lipids and Membranes. Annual Review of Virology, 2019, 6, 319-340.	6.7	81
17	Host Lipids in Positive-Strand RNA Virus Genome Replication. Frontiers in Microbiology, 2019, 10, 286.	3.5	106
18	Live Cell Imaging of Hepatitis C Virus Trafficking in Hepatocytes. Methods in Molecular Biology, 2019, 1911, 263-274.	0.9	4

GLENN RANDALL

#	Article	IF	CITATIONS
19	Single Particle Imaging of Polarized Hepatoma Organoids upon Hepatitis C Virus Infection Reveals an Ordered and Sequential Entry Process. Cell Host and Microbe, 2018, 23, 382-394.e5.	11.0	85
20	Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release. MBio, 2018, 9, .	4.1	31
21	RNA triphosphatase DUSP11 enables exonuclease XRN-mediated restriction of hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8197-8202.	7.1	32
22	Lipid Droplet Metabolism during Dengue Virus Infection. Trends in Microbiology, 2018, 26, 640-642.	7.7	34
23	Dengue Virus Activates the AMP Kinase-mTOR Axis To Stimulate a Proviral Lipophagy. Journal of Virology, 2017, 91, .	3.4	102
24	Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. Journal of Clinical Investigation, 2017, 127, 1338-1352.	8.2	188
25	Flunarizine prevents hepatitis C virus membrane fusion in a genotypeâ€dependent manner by targeting the potential fusion peptide within E1. Hepatology, 2016, 63, 49-62.	7.3	64
26	Hepatitis C Virus-Host Interactions. , 2016, , 197-233.		1
27	(+) RNA virus replication compartments: a safe home for (most) viral replication. Current Opinion in Microbiology, 2016, 32, 82-88.	5.1	62
28	Flavivirus modulation of cellular metabolism. Current Opinion in Virology, 2016, 19, 7-10.	5.4	50
29	Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1064-73.	7.1	72
30	Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. Virology, 2015, 476, 168-179.	2.4	31
31	Spatiotemporal Analysis of Hepatitis C Virus Infection. PLoS Pathogens, 2015, 11, e1004758.	4.7	47
32	Hepatitis C Virus Replication Compartment Formation: Mechanism and Drug Target. Gastroenterology, 2014, 146, 1164-1167.	1.3	4
33	Identification and comparative analysis of hepatitis C virus–host cell protein interactions. Molecular BioSystems, 2013, 9, 3199.	2.9	46
34	Lipids in Innate Antiviral Defense. Cell Host and Microbe, 2013, 14, 379-385.	11.0	72
35	EWSR1 Binds the Hepatitis C Virus <i>cis</i> -Acting Replication Element and Is Required for Efficient Viral Replication. Journal of Virology, 2013, 87, 6625-6634.	3.4	31
36	Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9, 1131-1158.	9.1	384

GLENN RANDALL

#	Article	IF	CITATIONS
37	Molecular Determinants and Dynamics of Hepatitis C Virus Secretion. PLoS Pathogens, 2012, 8, e1002466.	4.7	151
38	Manipulation or capitulation: virus interactions with autophagy. Microbes and Infection, 2012, 14, 126-139.	1.9	95
39	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
40	Hepatitis C virus—host interactions, replication, and viral assembly. Current Opinion in Virology, 2012, 2, 725-732.	5.4	42
41	Lipids at the interface of virus–host interactions. Current Opinion in Microbiology, 2012, 15, 512-518.	5.1	116
42	Dengue Virus and Autophagy. Viruses, 2011, 3, 1332-1341.	3.3	124
43	Multifaceted roles for lipids in viral infection. Trends in Microbiology, 2011, 19, 368-375.	7.7	287
44	A Physical Interaction Network of Dengue Virus and Human Proteins. Molecular and Cellular Proteomics, 2011, 10, M111.012187.	3.8	153
45	Hepatitis C Virus Stimulates the Phosphatidylinositol 4-Kinase III Alpha-Dependent Phosphatidylinositol 4-Phosphate Production That Is Essential for Its Replication. Journal of Virology, 2011, 85, 8870-8883.	3.4	158
46	Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17345-17350.	7.1	425
47	Possibilities for RNA Interference in Developing Hepatitis C Virus Therapeutics. Viruses, 2010, 2, 1647-1665.	3.3	6
48	Dengue Virus-Induced Autophagy Regulates Lipid Metabolism. Cell Host and Microbe, 2010, 8, 422-432.	11.0	567
49	Potential roles for cellular cofactors in hepatitis C virus replication complex formation. Communicative and Integrative Biology, 2009, 2, 471-473.	1.4	23
50	RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis. PLoS Pathogens, 2009, 5, e1000702.	4.7	157
51	Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7577-7582.	7.1	305
52	Allele-Specific Targeting of microRNAs to HLA-G and Risk of Asthma. American Journal of Human Genetics, 2008, 82, 251.	6.2	3
53	Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12884-12889.	7.1	511
54	Allele-Specific Targeting of microRNAs to HLA-G and Risk of Asthma. American Journal of Human Genetics, 2007, 81, 829-834.	6.2	344

GLENN RANDALL

#	Article	IF	CITATIONS
55	Silencing of USP18 Potentiates the Antiviral Activity of Interferon Against Hepatitis C Virus Infection. Gastroenterology, 2006, 131, 1584-1591.	1.3	154
56	Identification of microRNAs of the herpesvirus family. Nature Methods, 2005, 2, 269-276.	19.0	1,073
57	CD81 Is Required for Hepatitis C Virus Glycoprotein-Mediated Viral Infection. Journal of Virology, 2004, 78, 1448-1455.	3.4	322
58	Interfering with hepatitis C virus RNA replication. Virus Research, 2004, 102, 19-25.	2.2	60
59	Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 235-240.	7.1	314
60	Hepatitis C virus cell culture replication systems: their potential use for the development of antiviral therapies. Current Opinion in Infectious Diseases, 2001, 14, 743-747.	3.1	25
61	Herpes Simplex Virus 1 Open Reading Frames O and P Are Not Necessary for Establishment of Latent Infection in Mice. Journal of Virology, 2000, 74, 9019-9027.	3.4	17