Magnus Engwall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11572077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examination of aryl hydrocarbon receptor (AhR), estrogenic and anti-androgenic activities, and levels of polyaromatic compounds (PACs) in tire granulates using in vitro bioassays and chemical analysis. Chemosphere, 2022, 298, 134362.	8.2	6
2	Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. Frontiers in Toxicology, 2022, 4, 836447.	3.1	9
3	Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). Aquatic Toxicology, 2022, 248, 106175.	4.0	7
4	Predicting Chemical-Induced Liver Toxicity Using High-Content Imaging Phenotypes and Chemical Descriptors: A Random Forest Approach. Chemical Research in Toxicology, 2020, 33, 2261-2275.	3.3	13
5	Effect-Directed Analysis of Ah Receptor-Mediated Potencies in Microplastics Deployed in a Remote Tropical Marine Environment. Frontiers in Environmental Science, 2019, 7, .	3.3	7
6	Aryl hydrocarbon receptor-mediated potencies in field-deployed plastics vary by type of polymer. Environmental Science and Pollution Research, 2019, 26, 9079-9088.	5.3	12
7	Effect of perfluorooctanesulfonic acid (PFOS) on the liver lipid metabolism of the developing chicken embryo. Ecotoxicology and Environmental Safety, 2019, 170, 691-698.	6.0	28
8	Methylated PACs are more potent than their parent compounds: A study of aryl hydrocarbon receptor–mediated activity, degradability, and mixture interactions in the H4IIEâ€ <i>luc</i> assay. Environmental Toxicology and Chemistry, 2018, 37, 1409-1419.	4.3	44
9	Occurrence and leachability of polycyclic aromatic compounds in contaminated soils: Chemical and bioanalytical characterization. Science of the Total Environment, 2018, 622-623, 1476-1484.	8.0	32
10	Methylated polycyclic aromatic hydrocarbons and/or their metabolites are important contributors to the overall estrogenic activity of polycyclic aromatic hydrocarbon–contaminated soils. Environmental Toxicology and Chemistry, 2018, 37, 385-397.	4.3	24
11	Effects of perfluorooctane sulfonate on genes controlling hepatic fatty acid metabolism in livers of chicken embryos. Environmental Science and Pollution Research, 2018, 25, 23074-23081.	5.3	37
12	Developmental toxicity of PFOS and PFOA in great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and chicken (Gallus gallus domesticus). Environmental Science and Pollution Research, 2016, 23, 10855-10862.	5.3	30
13	Does perfluorooctane sulfonate (PFOS) act as chemosensitizer in zebrafish embryos?. Science of the Total Environment, 2016, 548-549, 317-324.	8.0	26
14	Timeâ€dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4llEâ€luc bioassay. Environmental Toxicology and Chemistry, 2014, 33, 943-953.	4.3	39
15	An oxygenated metabolite of benzo[a]pyrene increases hepatic β-oxidation of fatty acids in chick embryos. Environmental Science and Pollution Research, 2014, 21, 6243-6251.	5.3	7
16	AhR-mediated activities of polycyclic aromatic compound (PAC) mixtures are predictable by the concept of concentration addition. Environment International, 2014, 73, 94-103.	10.0	22
17	In vitro bioassays for detecting dioxin-like activity — Application potentials and limits of detection, a review. Science of the Total Environment, 2014, 487, 37-48.	8.0	82
18	High levels of perfluoroalkyl acids in eggs and embryo livers of great cormorant (Phalacrocorax) Tj ETQq0 0 0 rgBT	/Overlock 5.3	10 Tf 50 67 27

and Pollution Research, 2013, 20, 8021-8030.

Magnus Engwall

#	Article	IF	CITATIONS
19	Polycyclic aromatic hydrocarbons (PAHs) reduce hepatic β-oxidation of fatty acids in chick embryos. Environmental Science and Pollution Research, 2013, 20, 1881-1888.	5.3	11
20	The dioRAMA project: assessment of dioxin-like activity in sediments and fish (Rutilus rutilus) in support of the ecotoxicological characterization of sediments. Journal of Soils and Sediments, 2013, 13, 770-774.	3.0	7
21	Chemical and bioanalytical characterisation of PAHs in risk assessment of remediated PAH-contaminated soils. Environmental Science and Pollution Research, 2013, 20, 8511-8520.	5.3	45
22	Exposure time–dependent effects on the relative potencies and additivity of PAHs in the Ah receptorâ€based H4IIE″uc bioassay. Environmental Toxicology and Chemistry, 2012, 31, 1149-1157.	4.3	36
23	Perfluorooctane sulfonate increases β-oxidation of palmitic acid in chicken liver. Environmental Science and Pollution Research, 2012, 19, 1859-1863.	5.3	15
24	Some heterocyclic aromatic compounds are Ah receptor agonists in the DR-CALUX assay and the EROD assay with RTL-W1 cells. Environmental Science and Pollution Research, 2011, 18, 1297-1304.	5.3	44
25	AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment. Environmental Science and Pollution Research, 2009, 16, 521-530.	5.3	47
26	Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube river. Analytical and Bioanalytical Chemistry, 2008, 390, 2009-2019.	3.7	89
27	Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine — a mass balance approach using in vitro methods and chemical analysis. Environmental Science and Pollution Research, 2008, 15, 536-553.	5.3	86
28	A bioassay approach to determine the dioxin-like activity in sediment extracts from the Danube River: Ethoxyresorufin-O-deethylase induction in gill filaments and liver of three-spined sticklebacks (Gasterosteus aculeatus L.). Environment International, 2008, 34, 1176-1184.	10.0	20
29	IDENTIFICATION OF POTENTIALLY TOXIC COMPOUNDS IN COMPLEX EXTRACTS OF ENVIRONMENTAL SAMPLES USING GAS CHROMATOGRAPHY–MASS SPECTROMETRY AND MULTIVARIATE DATA ANALYSIS. Environmental Toxicology and Chemistry, 2007, 26, 208.	4.3	4
30	Relative differences in aryl hydrocarbon receptorâ€mediated response for 18 polybrominated and mixed halogenated dibenzoâ€ <i>P</i> â€dioxins and â€furans in cell lines from four different species. Environmental Toxicology and Chemistry, 2007, 26, 2448-2454.	4.3	95
31	Reed beds receiving industrial sludge containing nitroaromatic compounds. Environmental Science and Pollution Research, 2007, 14, 202-211.	5.3	43
32	Fractionation and Determination of Ah Receptor (AhR) Agonists in Organic Waste After Anaerobic Biodegradation and in Batch Experiments with PCB and decaBDE (8 pp). Environmental Science and Pollution Research, 2007, 14, 36-43.	5.3	11
33	Perfluorooctane Sulfonate Increases the Genotoxicity of Cyclophosphamide in the Micronucleus Assay with V79 Cells: Further Proof of Alterations in Cell Membrane Properties Caused by PFOS (3 pp). Environmental Science and Pollution Research, 2007, 14, 85-87.	5.3	39
34	Relative Differences in Aryl Hydrocarbon Receptor Mediated Response for Eighteen Polybrominated and Mixed Halogenated Dibenzo-p-dioxins and -Furans in Cell Lines from Four Different Species. Environmental Toxicology and Chemistry, 2007, preprint, 1.	4.3	1
35	Chemical and toxicological characterisation of PBDFs from photolytic decomposition of decaBDE in toluene. Environment International, 2006, 32, 851-857.	10.0	41
36	Ah Receptor Agonists in UV-exposed Toluene Solutions of Decabromodiphenyl Ether (decaBDE) and in Soils Contaminated with Polybrominated Diphenyl Ethers (PBDEs) (9 pp). Environmental Science and Pollution Research, 2006, 13, 161-169.	5.3	20

MAGNUS ENGWALL

#	Article	IF	CITATIONS
37	Distribution of brominated flame retardants in different dust fractions in air from an electronics recycling facility. Science of the Total Environment, 2005, 350, 151-160.	8.0	62
38	Changes in toxicity and genotoxicity of industrial sewage sludge samples containing nitro- and amino-aromatic compounds following treatment in bioreactors with different oxygen regimes. Environmental Science and Pollution Research, 2004, 11, 313-320.	5.3	58
39	Fate of ah receptor agonists during biological treatment of an industrial sludge containing explosives and pharmaceutical residues. Environmental Science and Pollution Research, 2004, 11, 379-387.	5.3	46
40	Personal air sampling and analysis of polybrominated diphenyl ethers and other bromine containing compounds at an electronic recycling facility in Sweden. Journal of Environmental Monitoring, 2004, 6, 874.	2.1	68
41	Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the river Neckar. Ecotoxicology, 2002, 11, 323-336.	2.4	82
42	Uptake of dioxin-like compounds from sewage sludge into various plant species – assessment of levels using a sensitive bioassay. Chemosphere, 2000, 40, 1189-1195.	8.2	51
43	Levels of dioxin-like compounds in sewage sludge determined with a bioassay based on erod induction in chicken embryo liver cultures. Chemosphere, 1999, 38, 2327-2343.	8.2	35
44	Dioxin-like compounds in HPLC-fractionated extracts of marine samples from the east and west coast of Sweden: Bioassay- and instrumentally-derived TCDD equivalents. Marine Pollution Bulletin, 1997, 34, 1032-1040.	5.0	13
45	Toxic potencies of extracts of sediment and settling particulate matter collected in the recipient of a bleached pulp mill effluent before and after abandoning chlorine bleaching. Environmental Toxicology and Chemistry, 1997, 16, 1187-1194.	4.3	41
46	Toxic potencies of lipophilic extracts from sediments and settling particulate matter (SPM) collected in a PCB ontaminated river system. Environmental Toxicology and Chemistry, 1996, 15, 213-222.	4.3	57
47	TOXIC POTENCIES OF LIPOPHILIC EXTRACTS FROM SEDIMENTS AND SETTLING PARTICULATE MATTER (SPM) COLLECTED IN A PCB-CONTAMINATED RIVER SYSTEM. Environmental Toxicology and Chemistry, 1996, 15, 213.	4.3	7
48	EROD induction in cultured chick embryo liver: A sensitive bioassay for dioxinâ€ i ike environmental pollutants. Environmental Toxicology and Chemistry, 1995, 14, 837-842.	4.3	32
49	Ethoxyresorufin O-deethylase (EROD) and aryl hydrocarbon hydroxylase (AHH)-inducing potency and lethality of chlorinated naphthalenes in chicken (Gallus domesticus) and eider duck (Somateria) Tj ETQq1 1 0.78 	3434 . gB ⁻	Г /Qwyerlock 1
50	Ethoxyresorufin. Archives of Toxicology, 1994, 68, 37.	4.2	33