Kyeoreh Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11563584/publications.pdf

Version: 2024-02-01

52	2,437 citations	257450 24 h-index	254184 43 g-index
papers	Citations	II-IIIqex	g-mdex
53 all docs	53 docs citations	53 times ranked	1741 citing authors

#	Article	IF	Citations
1	Roadmap on chaos-inspired imaging technologies (CI2-Tech). Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	27
2	Singleâ€Shot Referenceâ€Free Holographic Imaging using a Liquid Crystal Geometric Phase Diffuser. Laser and Photonics Reviews, 2022, 16, .	8.7	7
3	Disordered Optics: Exploiting Multiple Light Scattering and Wavefront Shaping for Nonconventional Optical Elements. Advanced Materials, 2020, 32, e1903457.	21.0	25
4	Speckle-Correlation Scattering Matrix Approaches for Imaging and Sensing through Turbidity. Sensors, 2020, 20, 3147.	3.8	10
5	Low-coherence optical diffraction tomography using a ferroelectric liquid crystal spatial light modulator. Optics Express, 2020, 28, 39649.	3.4	16
6	Interpreting Intensity Speckle as the Coherency Matrix of Classical Light. Physical Review Applied, 2019, 12, .	3.8	8
7	Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nature Communications, 2019, 10, 1304.	12.8	89
8	Lowâ€coherent optical diffraction tomography by angleâ€scanning illumination. Journal of Biophotonics, 2019, 12, e201800289.	2.3	12
9	Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 2019, 6, 45.	9.3	75
10	Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging. Scientific Reports, 2018, 8, 3064.	3.3	10
11	Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer. Physical Review Applied, 2018, 9, .	3.8	24
12	Holographic Display with an Enhanced Viewing Angle by using a Non-Periodic Photon Sieve., 2018,,.		О
13	High-Resolution Holographic Microscopy Exploiting Speckle-Correlation Scattering Matrix. Physical Review Applied, 2018, 10, .	3.8	18
14	Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward <i>in vivo</i> applications. APL Photonics, 2018, 3, .	5.7	58
15	Reference-free polarization-sensitive quantitative phase imaging using single-point optical phase conjugation. Optics Express, 2018, 26, 26858.	3.4	27
16	Dynamic 3D holographic display with enhanced viewing angle by using a nonperiodic pinhole array. , 2018, , .		0
17	Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nature Photonics, 2017, 11, 186-192.	31.4	148
18	Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light. Scientific Reports, 2017, 7, 41384.	3.3	7

#	Article	IF	Citations
19	Digital 3D holographic display using scattering layers for enhanced viewing angle and image size. , 2017, , .		O
20	Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system. Scientific Reports, 2017, 7, 8961.	3.3	8
21	Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers. Scientific Reports, 2017, 7, 44435.	3.3	11
22	Optical field imaging with a single photodiode exploiting optical phase conjugation. , 2017, , .		0
23	Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Optics Express, 2017, 25, 8036.	3.4	49
24	Effects of spatiotemporal coherence on interferometric microscopy. Optics Express, 2017, 25, 8085.	3.4	41
25	Beyond Born-Rytov limit for super-resolution optical diffraction tomography. Optics Express, 2017, 25, 30445.	3.4	25
26	Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration. Optics Express, 2017, 25, 30771.	3.4	25
27	[Invited Paper] Review: 3D Holographic Imaging and Display Exploiting Complex Optics. ITE Transactions on Media Technology and Applications, 2017, 5, 78-87.	0.5	5
28	Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Optics Letters, 2017, 42, 999.	3.3	116
29	White Light Quantitative Phase Imaging Unit. , 2017, , .		0
30	Characterizations of Erythrocytes from Individuals with Sickle Cell Diseases and Malaria Infection in Tanzania Using a Portable Quantitative Phase Imaging Unit., 2017,,.		0
31	White-light quantitative phase imaging unit. Optics Express, 2016, 24, 9308.	3.4	54
32	Energy leakage in partially measured scattering matrices of disordered media. Physical Review B, 2016, 93, .	3.2	3
33	Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 121510.	2.6	8
34	Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging. Scientific Reports, 2016, 6, 31698.	3.3	30
35	Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nature Communications, 2016, 7, 13359.	12.8	88
36	Scattering Optical Elements: Stand-Alone Optical Elements Exploiting Multiple Light Scattering. ACS Nano, 2016, 10, 6871-6876.	14.6	15

#	Article	IF	Citations
37	<i>In vivo</i> deep tissue imaging using wavefront shaping optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 101406.	2.6	21
38	One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector. Physical Review Letters, 2015, 115, 153902.	7.8	35
39	Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Scientific Reports, 2015, 5, 13289.	3.3	39
40	Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise. , 2015 , , .		8
41	Recent advances in wavefront shaping techniques for biomedical applications. Current Applied Physics, 2015, 15, 632-641.	2.4	194
42	Measuring optical transmission matrices by wavefront shaping. Optics Express, 2015, 23, 10158.	3.4	112
43	Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Optics Express, 2015, 23, 16933.	3.4	226
44	In vivo mouse tissue imaging by depth-enhanced optical coherence tomography using complex wavefront shaping. , 2015 , , .		0
45	Optogenetic regulation of cellular functions through an intact skull using wavefront shaping. , 2015, , .		0
46	Diffraction optical tomography using a quantitative phase imaging unit. Optics Letters, 2014, 39, 6935.	3.3	80
47	Quantitative phase imaging unit. Optics Letters, 2014, 39, 3630.	3.3	102
48	Biomedical applications of holographic microspectroscopy [Invited]. Applied Optics, 2014, 53, G111.	1.8	48
49	High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton. Journal of the Optical Society of Korea, 2014, 18, 691-697.	0.6	50
50	Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors, 2013, 13, 4170-4191.	3.8	436
51	Synthetic Fourier transform light scattering. Optics Express, 2013, 21, 22453.	3.4	45
52	Synthetic Fourier Transform Light Scattering. , 2013, , .		0