Antony Galione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11563432/publications.pdf

Version: 2024-02-01

15504 23533 13,740 190 65 111 citations g-index h-index papers 195 195 195 8656 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acidic Ca2+ stores and immune-cell function. Cell Calcium, 2022, 101, 102516.	2.4	12
2	Current methods to analyze lysosome morphology, positioning, motility and function. Traffic, 2022, 23, 238-269.	2.7	37
3	A tribute to Professor Sir Michael J. Berridge FRS (1938–2020). Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119014.	4.1	2
4	Glucose and NAADP trigger elementary intracellular \hat{l}^2 -cell Ca2+ signals. Scientific Reports, 2021, 11, 10714.	3.3	9
5	Choreographing endo-lysosomal Ca2+ throughout the life of a phagosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119040.	4.1	10
6	A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. IScience, 2021, 24, 102949.	4.1	1
7	Membrane Transport Cyclic ADP-RIBOSE and NAADP: Two Pyridine Nucleotide Ca2+ Mobilizing Messengers Targeting Intracellular Ca2+ Release Channels. , 2021, , 949-954.		O
8	Mechanistic convergence and shared therapeutic targets in Niemannâ€Pick disease. Journal of Inherited Metabolic Disease, 2020, 43, 574-585.	3.6	13
9	Does lysosomal rupture evoke Ca2+ release? A question of pores and stores. Cell Calcium, 2020, 86, 102139.	2.4	18
10	<scp>NAADP</scp> â€regulated twoâ€pore channels drive phagocytosis through endoâ€lysosomal Ca ²⁺ nanodomains, calcineurin and dynamin. EMBO Journal, 2020, 39, e104058.	7.8	54
11	Lysosomal agents inhibit store-operated Ca2+ entry. Journal of Cell Science, 2020, 134, .	2.0	2
12	Defective platelet function in <scp>Niemannâ€Pick</scp> disease type <scp>C1</scp> . JIMD Reports, 2020, 56, 46-57.	1.5	9
13	A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biology, 2020, 18, 8.	3.8	16
14	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2020, 1131, 371-394.	1.6	15
15	NAADP Receptors. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035071.	5. 5	43
16	A multiscale analysis in CD38 $\langle \sup \hat{a}' \hat{a}' \langle \sup \rangle$ mice unveils major prefrontal cortex dysfunctions. FASEB Journal, 2019, 33, 5823-5835.	0.5	19
17	Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Developmental Biology, 2019, 445, 211-225.	2.0	10
18	TPC2-mediated Ca2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Developmental Biology, 2018, 438, 57-68.	2.0	10

#	Article	IF	Citations
19	Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic \hat{l} ±-Cells. Diabetes, 2018, 67, 1128-1139.	0.6	61
20	$\label{limited-limit} \begin{subarray}{ll} Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca $$\langle \sup 2+\langle \sup \rangle $ signaling. Science Signaling, 2018, 11, . \end{subarray}$	3.6	41
21	Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Developmental Biology, 2017, 425, 109-129.	2.0	22
22	Synthesis of the Ca2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in \hat{I}^2 -adrenoceptor signaling. Journal of Biological Chemistry, 2017, 292, 13243-13257.	3.4	44
23	High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Scientific Reports, 2017, 7, 40620.	3.3	59
24	Carvedilol Inhibits cADPR- and IP3-Induced Ca2+ Release. Messenger (Los Angeles, Calif: Print), 2016, 5, 92-99.	0.3	3
25	The two pore channel TPC2 is dispensable in pancreatic \hat{l}^2 -cells for normal Ca2+ dynamics and insulin secretion. Cell Calcium, 2016, 59, 32-40.	2.4	26
26	Ebolavirus Glycoprotein Directs Fusion through NPC1 ⁺ Endolysosomes. Journal of Virology, 2016, 90, 605-610.	3.4	67
27	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 2016, 1, 18.	1.8	26
28	Expression of Ca ²⁺ â€permeable twoâ€pore channels rescues <scp>NAADP</scp> signalling in <scp>TPC</scp> â€deficient cells. EMBO Journal, 2015, 34, 1743-1758.	7.8	144
29	Two-Pore Channels: Lessons from Mutant Mouse Models. Messenger (Los Angeles, Calif: Print), 2015, 4, 4-22.	0.3	22
30	Preferential Coupling of the NAADP Pathway to Exocytosis in T-Cells. Messenger (Los Angeles, Calif:) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
31	Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca2+ signaling during myogenesis in intact zebrafish. International Journal of Developmental Biology, 2015, 59, 313-325.	0.6	30
32	Intracellular sphingosine releases calcium from lysosomes. ELife, 2015, 4, .	6.0	115
33	TPC: the NAADP discovery channel?. Biochemical Society Transactions, 2015, 43, 384-389.	3.4	41
34	A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium, 2015, 58, 27-47.	2.4	110
35	Imaging approaches to measuring lysosomal calcium. Methods in Cell Biology, 2015, 126, 159-195.	1.1	36
36	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling. Journal of Biological Chemistry, 2015, 290, 3377-3389.	3.4	69

#	Article	IF	CITATIONS
37	Two-pore Channels (TPC2s) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) at Lysosomal-Sarcoplasmic Reticular Junctions Contribute to Acute and Chronic \hat{l}^2 -Adrenoceptor Signaling in the Heart. Journal of Biological Chemistry, 2015, 290, 30087-30098.	3.4	63
38	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2015, 290, 21376-21392.	3.4	48
39	Reply to "TPC1 Knockout Knocks Out TPC1― Molecular and Cellular Biology, 2015, 35, 1884-1884.	2.3	1
40	GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. Journal of Clinical Investigation, 2015, 125, 4714-4728.	8.2	145
41	Synthesis of [³² P]NAADP for the Radioreceptor Binding Assay. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076919.	0.3	1
42	Preparation and Use of Sea Urchin Egg Homogenates for Studying NAADP-Mediated Ca2+ Release. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076901-pdb.prot076901.	0.3	6
43	Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics, 2014, 198, 17-29.	2.9	44
44	Reconstituted Human TPC1 Is a Proton-Permeable Ion Channel and Is Activated by NAADP or Ca ²⁺ . Science Signaling, 2014, 7, ra46.	3.6	79
45	Preparation and Use of Sea Urchin Egg Homogenates. Methods in Molecular Biology, 2014, 1128, 161-173.	0.9	4
46	VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel- $2\hat{a}\in$ dependent Ca ²⁺ signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4706-15.	7.1	138
47	â€~Click cyclic ADP-ribose': a neutral second messenger mimic. Chemical Communications, 2014, 50, 2458-2461.	4.1	25
48	Synthesis of Caged NAADP. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076943-pdb.prot076943.	0.3	0
49	TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2. Molecular and Cellular Biology, 2014, 34, 3981-3992.	2.3	76
50	Synthesis of NAADP-AM as a Membrane-Permeant NAADP Analog. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076927.	0.3	3
51	Twoâ€pore channels (<scp>TPC</scp> s): Current controversies. BioEssays, 2014, 36, 173-183.	2.5	96
52	Measurement of Luminal pH of Acidic Stores as a Readout for NAADP Action. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076935.	0.3	1
53	Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood, 2014, 123, 51-60.	1.4	38
54	Haxâ€1 identified as a twoâ€pore channel (TPC)â€binding protein. FEBS Letters, 2013, 587, 3782-3786.	2.8	20

#	Article	IF	CITATIONS
55	The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2542-2559.	4.1	99
56	Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. Journal of Cell Biology, 2013, 200, 789-805.	5.2	137
57	Cytolytic granules supply Ca2+for their own exocytosis via NAADP and resident two-pore channels. Communicative and Integrative Biology, 2013, 6, e24175.	1.4	7
58	NAADP-Induced Ca ²⁺ Release: Two-Pore or Not Two-Pore?. Messenger (Los) Tj ETQq0 (0 o rgBT /C	verlock 10 Tf
59	Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg. Journal of Biological Chemistry, 2012, 287, 2308-2315.	3.4	110
60	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2012, 740, 305-323.	1.6	10
61	The luminal Ca2+ chelator, TPEN, inhibits NAADP-induced Ca2+ release. Cell Calcium, 2012, 52, 481-487.	2.4	11
62	ß-Adrenergic receptor signaling increases NAADP and cADPR levels in the heart. Biochemical and Biophysical Research Communications, 2012, 427, 326-329.	2.1	33
63	NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing. Current Biology, 2012, 22, 2331-2337.	3.9	121
64	An Nâ€Terminal Dileucine Motif Directs Twoâ€Pore Channels to the Tonoplast of Plant Cells. Traffic, 2012, 13, 1012-1022.	2.7	43
65	Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochemical Journal, 2011, 439, 349-378.	3.7	329
66	TPC2 is a Novel NAADP-Sensitive Intracellular Ca2+-Release Channel with Unique Gating Characteristics. Biophysical Journal, 2011, 100, 433a.	0.5	2
67	Synthesis of cyclic adenosine $5\hat{a}\in 2$ -diphosphate ribose analogues: a $C2\hat{a}\in 2$ endo/syn $\hat{a}\in \infty$ southern $\hat{a}\in -\infty$ ribose conformation underlies activity at the sea urchin cADPR receptor. Organic and Biomolecular Chemistry, 2011, 9, 278-290.	2.8	23
68	NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. Blood, 2011, 117, 4968-4977.	1.4	71
69	NAADP influences excitation–contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium, 2011, 50, 449-458.	2.4	54
70	Physiological roles of NAADP-mediated Ca2+ signaling. Science China Life Sciences, 2011, 54, 725-732.	4.9	26
71	NAADP Receptors. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004036-a004036.	5.5	52
72	Two-pore Channels Form Homo- and Heterodimers. Journal of Biological Chemistry, 2011, 286, 37058-37062.	3.4	51

#	Article	IF	Citations
73	Loss of activity mutations in phospholipase C zeta (PLCÂ) abolishes calcium oscillatory ability of human recombinant protein in mouse oocytes. Human Reproduction, 2011, 26, 3372-3387.	0.9	75
74	Two-pore channels for integrative Ca ²⁺ signaling. Communicative and Integrative Biology, 2010, 3, 12-17.	1.4	34
75	NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochemical Society Transactions, 2010, 38, 1424-1431.	3.4	91
76	Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking. Current Biology, 2010, 20, 703-709.	3.9	234
77	TPCs: Endolysosomal channels for Ca ²⁺ mobilization from acidic organelles triggered by NAADP. FEBS Letters, 2010, 584, 1966-1974.	2.8	71
78	Cyclic ADP-ribose and NAADP., 2010,, 893-896.		0
79	Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19927-19932.	7.1	64
80	TPC2 Is a Novel NAADP-sensitive Ca2+ Release Channel, Operating as a Dual Sensor of Luminal pH and Ca2+. Journal of Biological Chemistry, 2010, 285, 35039-35046.	3.4	197
81	TPC2 Proteins Mediate Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)- and Agonist-evoked Contractions of Smooth Muscle. Journal of Biological Chemistry, 2010, 285, 24925-24932.	3.4	71
82	Acidic NAADP-sensitive Calcium Stores in the Endothelium. Journal of Biological Chemistry, 2010, 285, 37133-37137.	3.4	57
83	The Ecto-enzyme CD38 Is a Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Synthase That Couples Receptor Activation to Ca2+ Mobilization from Lysosomes in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2010, 285, 38251-38259.	3.4	94
84	The Calcium-mobilizing Messenger Nicotinic Acid Adenine Dinucleotide Phosphate Participates in Sperm Activation by Mediating the Acrosome Reaction. Journal of Biological Chemistry, 2010, 285, 18262-18269.	3.4	27
85	Ca2+ Release from the Endoplasmic Reticulum of NY-ESO-1–Specific T Cells Is Modulated by the Affinity of TCR and by the Use of the CD8 Coreceptor. Journal of Immunology, 2010, 184, 1829-1839.	0.8	36
86	An emerging role for NAADP-mediated Ca $<$ sup $>$ 2+ $<$ /sup $>$ signaling in the pancreatic \hat{l}^2 -cell. Islets, 2010, 2, 323-330.	1.8	29
87	Calcium signaling via two-pore channels: local or global, that is the question. American Journal of Physiology - Cell Physiology, 2010, 298, C430-C441.	4.6	117
88	Luminal Ca2+ is a Major Sensitiser of Two-Pore Channels to NAADP. Biophysical Journal, 2010, 98, 682a-683a.	0.5	4
89	Analogues of the Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Antagonist Ned-19 Indicate Two Binding Sites on the NAADP Receptor. Journal of Biological Chemistry, 2009, 284, 34930-34934.	3.4	40
90	The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels. Pflugers Archiv European Journal of Physiology, 2009, 458, 869-876.	2.8	86

#	Article	IF	Citations
91	NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009, 459, 596-600.	27.8	687
92	Identification of a chemical probe for NAADP by virtual screening. Nature Chemical Biology, 2009, 5, 220-226.	8.0	274
93	NAADP-mediated channel â€~chatter' in neurons of the rat medulla oblongata. Biochemical Journal, 2009, 419, 91-99.	3.7	53
94	Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine, 2008, 14, 1247-1255.	30.7	730
95	Cell-permeant NAADP: A novel chemical tool enabling the study of Ca2+ signalling in intact cells. Cell Calcium, 2008, 43, 531-538.	2.4	73
96	Ca2+ Signaling Occurs via Second Messenger Release from Intraorganelle Synthesis Sites. Current Biology, 2008, 18, 1612-1618.	3.9	61
97	Investigating cADPR and NAADP in intact and broken cell preparations. Methods, 2008, 46, 194-203.	3.8	28
98	2′-Deoxy Cyclic Adenosine 5′-Diphosphate Ribose Derivatives: Importance of the 2′-Hydroxyl Motif for the Antagonistic Activity of 8-Substituted cADPR Derivatives. Journal of Medicinal Chemistry, 2008, 51, 1623-1636.	e 6.4	28
99	Sperm express a Ca2+-regulated NAADP synthase. Biochemical Journal, 2008, 411, 63-70.	3.7	25
100	NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells. American Journal of Physiology - Cell Physiology, 2007, 292, C227-C239.	4.6	96
101	NAADP Controls Cross-talk between Distinct Ca2+ Stores in the Heart. Journal of Biological Chemistry, 2007, 282, 15302-15311.	3.4	88
102	Fertilization and Nicotinic Acid Adenine Dinucleotide Phosphate Induce pH Changes in Acidic Ca2+ Stores in Sea Urchin Eggs. Journal of Biological Chemistry, 2007, 282, 37730-37737.	3.4	39
103	NAADP induces pH changes in the lumen of acidic Ca2+ stores. Biochemical Journal, 2007, 402, 301-310.	3.7	85
104	Chemo-enzymatic synthesis and biological evaluation of photolabile nicotinic acid adenine dinuclotide phosphate (NAADP+). Organic and Biomolecular Chemistry, 2007, 5, 441-443.	2.8	6
105	Flipping the switch: How a sperm activates the egg at fertilization. Developmental Dynamics, 2007, 236, 2027-2038.	1.8	91
106	Refinement of a radioreceptor binding assay for nicotinic acid adenine dinucleotide phosphate. Analytical Biochemistry, 2007, 371, 26-36.	2.4	28
107	Dual effects of cyclic ADP-ribose on sarcoplasmic reticulum Ca2+ release and storage in cardiac myocytes isolated from guinea-pig and rat ventricleâ ⁻ †. Cell Calcium, 2007, 41, 537-546.	2.4	24
108	Cell-Permeant Small-Molecule Modulators of NAADP-Mediated Ca2+ Release. Chemistry and Biology, 2006, 13, 659-665.	6.0	16

#	Article	IF	CITATIONS
109	Calcium signalling by nicotinic acid adenine dinucleotide phosphate (NAADP). FEBS Journal, 2005, 272, 4598-4606.	4.7	58
110	NAADP receptors. Cell Calcium, 2005, 38, 273-280.	2.4	51
111	Role of NAADP and cADPR in the Induction and Maintenance of Agonist-Evoked Ca2+ Spiking in Mouse Pancreatic Acinar Cells. Current Biology, 2005, 15, 874-878.	3.9	137
112	CHEMICAL SYNTHESIS OF THE NOVEL CA2+ MESSENGER NAADP. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 513-518.	1.1	6
113	The NAADP Receptor: New Receptors or New Regulation?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 73-79.	3.4	94
114	Methods in Cyclic ADP-Ribose and NAADP Research. , 2005, , 265-334.		4
115	Organelle Selection Determines Agonist-specific Ca2+ Signals in Pancreatic Acinar and \hat{l}^2 Cells. Journal of Biological Chemistry, 2004, 279, 7234-7240.	3.4	192
116	Lysosome-Sarcoplasmic Reticulum Junctions. Journal of Biological Chemistry, 2004, 279, 54319-54326.	3.4	179
117	Chemical Synthesis of the Second Messenger Nicotinic Acid Adenine Dinucleotide Phosphate by Total Synthesis of Nicotinamide Adenine Dinucleotide Phosphate. Angewandte Chemie - International Edition, 2004, 43, 4637-4640.	13.8	14
118	Aplysia californica mediated cyclisation of novel $3\hat{a} \in \mathbb{R}^2$ -modified NAD + analogues: a role for hydrogen bonding in the recognition of cyclic adenosine $5\hat{a} \in \mathbb{R}^2$ -diphosphate ribose. Bioorganic and Medicinal Chemistry, 2004, 12, 475-487.	3.0	11
119	Intracellular Calcium Channels: cADPR-Modulated (Ryanodine Receptors)., 2004,, 465-468.		0
120	Sperm Deliver a New Second Messenger. Current Biology, 2003, 13, 125-128.	3.9	155
121	NAADP. Current Biology, 2003, 13, 247-251.	3.9	159
122	Convergent Synthesis and Unexpected Ca2+-Mobilizing Activity of 8-Substituted Analogues of Cyclic ADP-Carbocyclic-Ribose, a Stable Mimic of the Ca2+-Mobilizing Second Messenger Cyclic ADP-Ribose. Journal of Medicinal Chemistry, 2003, 46, 4741-4749.	6.4	24
123	Phospholipase C-dependent Ca2+ release by worm and mammal sperm factors. Biochemical and Biophysical Research Communications, 2003, 307, 47-51.	2.1	10
124	The NO Pathway Acts Late during the Fertilization Response in Sea Urchin Eggs. Journal of Biological Chemistry, 2003, 278, 12247-12254.	3.4	67
125	Vasodilation by the Calcium-mobilizing Messenger Cyclic ADP-ribose. Journal of Biological Chemistry, 2003, 278, 9602-9608.	3.4	50
126	Cyclic ADP-ribose and NAADP., 2003, , 15-17.		1

#	Article	IF	CITATIONS
127	Nicotinic Acid Adenine Dinucleotide Phosphate Mediates Ca2+Signals and Contraction in Arterial Smooth Muscle via a Two-Pool Mechanism. Circulation Research, 2002, 91, 1168-1175.	4.5	106
128	A pivotal role for cADPRâ€mediated Ca 2+ signaling: regulation of endothelinâ€induced contraction in peritubular smooth muscle cells. FASEB Journal, 2002, 16, 697-705.	0.5	56
129	Solubilization of Receptors for the Novel Ca2+-mobilizing Messenger, Nicotinic Acid Adenine Dinucleotide Phosphate. Journal of Biological Chemistry, 2002, 277, 43717-43723.	3.4	51
130	Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid–adenine dinucleotide phosphate via a 2′-specific Ca2+-dependent phosphatase. Biochemical Journal, 2002, 365, 295-301.	3.7	43
131	NAADP Mobilizes Ca2+ from Reserve Granules, Lysosome-Related Organelles, in Sea Urchin Eggs. Cell, 2002, 111, 703-708.	28.9	442
132	Calmodulin Dissociation Mediates Desensitization of the cADPR-Induced Ca2+ Release Mechanism. Current Biology, 2002, 12, 2018-2022.	3.9	25
133	Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO Journal, 2002, 21, 909-919.	7.8	166
134	Spatial and Temporal Control of Calcium Signaling by NAADP., 2002,, 199-215.		2
135	Regulation of Synthesis of cADPR and NAADP. , 2002, , 45-64.		1
136	Sensitizing Calcium-Induced Calcium Release. , 2002, , 167-197.		2
137	Ca2+ Release Induced by Cyclic ADP Ribose in Mice Lacking Type 3 Ryanodine Receptor. Biochemical and Biophysical Research Communications, 2001, 288, 697-702.	2.1	7
138	Coordination of Ca2+ signalling by NAADP. Trends in Biochemical Sciences, 2001, 26, 482-489.	7.5	151
139	ADP-ribosyl Cyclase and Cyclic ADP-ribose Hydrolase Act as a Redox Sensor. Journal of Biological Chemistry, 2001, 276, 11180-11188.	3.4	116
140	Prolonged Inactivation of Nicotinic Acid Adenine Dinucleotide Phosphate-induced Ca2+ Release Mediates a Spatiotemporal Ca2+ Memory. Journal of Biological Chemistry, 2001, 276, 11223-11225.	3.4	39
141	Calcium Signaling. , 2001, , 679-691.		1
142	Unique kinetics of nicotinic acidâ€'adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochemical Journal, 2000, 352, 725.	3.7	19
143	Unique kinetics of nicotinic acid–adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochemical Journal, 2000, 352, 725-729.	3.7	51
144	Two neuropeptides recruit different messenger pathways to evoke Ca2+ signals in the same cell. Current Biology, 2000, 10, 993-996.	3.9	41

#	Article	IF	Citations
145	NAADP-induced calcium release in sea urchin eggs. Biology of the Cell, 2000, 92, 197-204.	2.0	61
146	Widespread Distribution of Binding Sites for the Novel Ca2+-mobilizing Messenger, Nicotinic Acid Adenine Dinucleotide Phosphate, in the Brain. Journal of Biological Chemistry, 2000, 275, 36495-36497.	3.4	57
147	Spatial Control of Ca2+ Signaling by Nicotinic Acid Adenine Dinucleotide Phosphate Diffusion and Gradients. Journal of Biological Chemistry, 2000, 275, 38687-38692.	3.4	81
148	Induction of Hippocampal LTD Requires Nitric-Oxide-Stimulated PKG Activity and Ca ²⁺ Release From Cyclic ADP-Ribose-Sensitive Stores. Journal of Neurophysiology, 1999, 82, 1569-1576.	1.8	106
149	An Antagonist of cADP-ribose Inhibits Arrhythmogenic Oscillations of Intracellular Ca2+ In Heart Cells. Journal of Biological Chemistry, 1999, 274, 17820-17827.	3.4	53
150	Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature, 1999, 398, 74-76.	27.8	377
151	Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Current Biology, 1999, 9, 751-754.	3.9	98
152	Potentiation of cADPR-Induced Ca2+-Release by Methylxanthine Analogues. Journal of Medicinal Chemistry, 1999, 42, 2527-2534.	6.4	25
153	Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochemical Journal, 1999, 342, 269-273.	3.7	71
154	Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochemical Journal, 1999, 342, 269.	3.7	31
155	Microinjection of cyclic ADP-ribose triggers a regenerative wave of Ca2+ release and exocytosis of cortical alveoli in medaka eggs. Zygote, 1999, 7, 285-292.	1.1	19
156	Mechanisms of calcium release and sequestration in eggs of Chaetopterus pergamentaceus. Cell Calcium, 1998, 24, 285-292.	2.4	21
157	Cyclic ADP-ribose and the regulation of calcium-induced calcium release in eggs and cardiac myocytes. Cell Biochemistry and Biophysics, 1998, 28, 19-30.	1.8	30
158	Differential regulation of nicotinic acid–adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochemical Journal, 1998, 331, 837-843.	3.7	63
159	7-Deaza-8-bromo-cyclic ADP-ribose, the First Membrane-permeant, Hydrolysis-resistant Cyclic ADP-ribose Antagonist. Journal of Biological Chemistry, 1997, 272, 16358-16363.	3.4	7 3
160	Kinetic Properties of Nicotinic Acid Adenine Dinucleotide Phosphate-induced Ca2+ Release. Journal of Biological Chemistry, 1997, 272, 7669-7675.	3.4	30
161	Cyclic ADP-ribose Enhances Coupling between Voltage-gated Ca2+ Entry and Intracellular Ca2+ Release. Journal of Biological Chemistry, 1997, 272, 20967-20970.	3.4	56
162	Roles for Adenosine Ribose Hydroxyl Groups in Cyclic Adenosine 5â€~-Diphosphate Ribose-Mediated Ca2+ Release. Biochemistry, 1997, 36, 9509-9517.	2.5	56

#	Article	IF	CITATIONS
163	Synthesis of 7-deaza-8-bromo cyclic adenosine $5\hat{a}\in^2$ -diphosphate ribose: the first hydrolysis resistant antagonist at the cADPR receptor. Chemical Communications, 1997, , 695-696.	4.1	20
164	A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends in Pharmacological Sciences, 1997, 18, 108-110.	8.7	87
165	A Cytosolic Sperm Protein Factor Mobilizes Ca2+ from Intracellular Stores by Activating Multiple Ca2+ Release Mechanisms Independently of Low Molecular Weight Messengers. Journal of Biological Chemistry, 1997, 272, 28901-28905.	3.4	33
166	7-Deaza cyclic adenosine 5′-diphosphate ribose: first example of a Ca2+-mobilizing partial agonist related to cyclic adenosine 5′-diphosphate ribose. Chemistry and Biology, 1997, 4, 51-61.	6.0	49
167	Actions of cADP-Ribose and Its Antagonists on Contraction in Guinea Pig Isolated Ventricular Myocytes. Circulation Research, 1997, 81, 879-884.	4.5	62
168	Cyclic aristeromycin diphosphate ribose: A potent and poorly hydrolysable Ca2+-mobilising mimic of cyclic adenosine diphosphate ribose. FEBS Letters, 1996, 379, 227-230.	2.8	63
169	Calcium store depletion potentiates a phosphodiesterase inhibitor- and dibutyryl cGMP-evoked calcium influx in rat pituitary GH3cells. FEBS Letters, 1996, 386, 39-42.	2.8	23
170	Inhibition of cADPR-Hydrolase by ADP-Ribose Potentiates cADPR Synthesis from \hat{l}^2 -NAD+. Biochemical and Biophysical Research Communications, 1996, 223, 502-507.	2.1	12
171	Nicotinamide inhibits cyclic ADP-ribose-mediated calcium signalling in sea urchin eggs. Biochemical Journal, 1996, 319, 613-617.	3.7	88
172	Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochemical Journal, 1996, 315, 721-725.	3.7	176
173	A specific cyclic ADP-ribose antagonist inhibits cardiac excitation–contraction coupling. Current Biology, 1996, 6, 989-996.	3.9	108
174	Anti-Ig-induced Calcium Influx in Rat B Lymphocytes Mediated by cGMP through a Dihydropyridine-sensitive Channel. Journal of Biological Chemistry, 1996, 271, 7297-7300.	3.4	99
175	Nitric Oxide-induced Mobilization of Intracellular Calcium via the Cyclic ADP-ribose Signaling Pathway. Journal of Biological Chemistry, 1996, 271, 3699-3705.	3.4	192
176	Unique Inactivation Properties of NAADP-sensitive Ca2+ Release. Journal of Biological Chemistry, 1996, 271, 11599-11602.	3.4	153
177	Cyclic ADP-Ribose and Calcium Signaling. , 1996, , 295-307e.		7
178	Nitric oxide induces intracellular Ca2+ mobilization and increases secretion of incorporated 5-hydroxytryptamine in rat pancreatic \hat{l}^2 -cells. FEBS Letters, 1995, 371, 99-104.	2.8	74
179	Chemoenzymatic synthesis of analogues of the second messenger candidate cyclic adenosine $5\hat{a}\in^2$ -diphosphate ribose. Journal of the Chemical Society Chemical Communications, 1995, , 1359-1360.	2.0	27
180	Ca2+ release induced by cyclic ADP-ribose. Trends in Cell Biology, 1994, 4, 431-436.	7.9	96

#	Article	IF	CITATIONS
181	Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling. Molecular and Cellular Endocrinology, 1994, 98, 125-131.	3.2	133
182	Cyclic ADP-Ribose: Metabolism and Calcium Mobilizing Function. Vitamins and Hormones, 1994, 48, 199-257.	1.7	104
183	cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature, 1993, 365, 456-459.	27.8	343
184	Cyclic ADP-ribose-induced Ca2+release from rat brain microsomes. FEBS Letters, 1993, 318, 259-263.	2.8	106
185	Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Letters, 1993, 335, 231-233.	2.8	74
186	<i>Response</i> : Cyclic ADP-Ribose in β Cells. Science, 1993, 262, 585-586.	12.6	0
187	Response : Cyclic ADP-Ribose in β Cells. Science, 1993, 262, 585-586.	12.6	0
188	Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends in Pharmacological Sciences, 1992, 13, 304-306.	8.7	134
189	Cytosolic calcium oscillators. FASEB Journal, 1988, 2, 3074-3082.	0.5	670
190	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 0, 1, 18.	1.8	30