
VerÃ³nica Cambiazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11563314/publications.pdf Version: 2024-02-01

VEDÃ3NICA CAMBIAZO

#	Article	IF	CITATIONS
1	A Rapid and Efficient Method for Purifying High Quality Total RNA from Peaches (Prunus persica) for Functional Genomics Analyses. Biological Research, 2005, 38, 83-8.	3.4	215
2	Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Scientific Reports, 2018, 8, 5875.	3.3	123
3	Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics, 2010, 11, 43.	2.8	107
4	Transcriptional response of Atlantic salmon families to Piscirickettsia salmonis infection highlights the relevance of the iron-deprivation defence system. BMC Genomics, 2015, 16, 495.	2.8	94
5	Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochemical Journal, 2004, 378, 617-624.	3.7	92
6	Identification of woolliness response genes in peach fruit after post-harvest treatments. Journal of Experimental Botany, 2008, 59, 1973-1986.	4.8	78
7	Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. BioMetals, 2003, 16, 169-174.	4.1	75
8	Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2010, 393, 248-252.	2.1	72
9	Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics, 2009, 10, 423.	2.8	63
10	The bioleaching potential of a bacterial consortium. Bioresource Technology, 2016, 218, 659-666.	9.6	63
11	Complete genome sequence of Piscirickettsia salmonis LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish. Journal of Biotechnology, 2015, 212, 30-31.	3.8	54
12	Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in <i>Enterococcus faecalis</i> . Metallomics, 2015, 7, 1137-1145.	2.4	35
13	Soil Bacterial Communities From the Chilean Andean Highlands: Taxonomic Composition and Culturability. Frontiers in Bioengineering and Biotechnology, 2019, 7, 10.	4.1	34
14	Regulatory network for cell shape changes during Drosophila ventral furrow formation. Journal of Theoretical Biology, 2006, 239, 49-62.	1.7	33
15	Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP. Frontiers in Microbiology, 2016, 7, 643.	3.5	33
16	The Role of Fur in the Transcriptional and Iron Homeostatic Response of Enterococcus faecalis. Frontiers in Microbiology, 2018, 9, 1580.	3.5	32
17	Bacterial communities associated to Chilean altiplanic native plants from the Andean grasslands soils. Scientific Reports, 2019, 9, 1042.	3.3	32
18	DMAPâ€85: A Ï"‣ike Protein from <i>Drosophila melanogaster</i> Larvae. Journal of Neurochemistry, 1995, 64, 1288-1297.	3.9	31

VerÃ³nica Cambiazo

#	Article	IF	CITATIONS
19	Transcriptomic response of Enterococcus faecalis to iron excess. BioMetals, 2012, 25, 737-747.	4.1	31
20	Seasonal variation in the development of chilling injury in â€~O'Henry' peaches. Scientia Horticulturae, 2006, 110, 79-83.	3.6	30
21	Effects of postharvest treatments on gene expression in Prunus persica fruit: Normal and altered ripening. Postharvest Biology and Technology, 2013, 75, 125-134.	6.0	30
22	Microbiome analysis and bacterial isolation from LejÃa Lake soil in Atacama Desert. Extremophiles, 2018, 22, 665-673.	2.3	30
23	Transcriptomic Changes of Piscirickettsia salmonis During Intracellular Growth in a Salmon Macrophage-Like Cell Line. Frontiers in Cellular and Infection Microbiology, 2019, 9, 426.	3.9	27
24	Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. BioMetals, 2010, 23, 1105-1112.	4.1	24
25	Cop-like operon: Structure and organization in species of the Lactobacillale order. Biological Research, 2006, 39, 87-93.	3.4	23
26	Piscirickettsia salmonis Cryptic Plasmids: Source of Mobile DNA and Virulence Factors. Pathogens, 2019, 8, 269.	2.8	23
27	Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. BioMetals, 2012, 25, 75-93.	4.1	21
28	Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment. Scientific Reports, 2020, 10, 5560.	3.3	19
29	The β-isoform of heat shock protein hsp-90 is structurally related with human microtubule-interacting protein Mip-90. FEBS Letters, 1999, 457, 343-347.	2.8	17
30	Analysis of Piscirickettsia salmonis Metabolism Using Genome-Scale Reconstruction, Modeling, and Testing. Frontiers in Microbiology, 2017, 8, 2462.	3.5	17
31	Global Proteomic Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular Infection. Microorganisms, 2020, 8, 1845.	3.6	17
32	Overexpression of amyloid precursor protein increases copper content in HEK293 cells. Biochemical and Biophysical Research Communications, 2009, 382, 740-744.	2.1	15
33	Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogasterembryogenesis. BMC Biology, 2009, 7, 61.	3.8	12
34	Identification of genes expressed during Drosophila melanogaster gastrulation by using subtractive hybridization. Gene, 2005, 345, 213-224.	2.2	10
35	Microtubule binding of theDrosophilaDMAP-85 protein is regulated by phosphorylation in vitro. FEBS Letters, 2000, 483, 37-42.	2.8	9
36	JUICE: a data management system that facilitates the analysis of large volumes of information in an EST project workflow. BMC Bioinformatics, 2006, 7, 513.	2.6	9

VerÃ³nica Cambiazo

#	Article	IF	CITATIONS
37	Complete genome sequence of Microbacterium sp. CGR1, bacterium tolerant to wide abiotic conditions isolated from the Atacama Desert. Journal of Biotechnology, 2015, 216, 149-150.	3.8	8
38	PCR-RFLP Detection and Genogroup Identification of Piscirickettsia salmonis in Field Samples. Pathogens, 2020, 9, 358.	2.8	8
39	Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo. Gene, 2014, 535, 210-217.	2.2	7
40	Tubulin domains for the interaction of microtubule associated protein DMAP-85 from Drosophila melanogaster. Molecular and Cellular Biochemistry, 1996, 158, 149-59.	3.1	6
41	Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines. Biological Research, 2006, 39, 125-42.	3.4	6
42	Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins. BioMetals, 2013, 26, 1033-1040.	4.1	6
43	Target genes of Dpp/BMP signaling pathway revealed by transcriptome profiling in the early D. melanogaster embryo. Gene, 2016, 591, 191-200.	2.2	6
44	Spatial and temporal distribution of Patched-related protein in the Drosophila embryo. Gene Expression Patterns, 2015, 19, 120-128.	0.8	5
45	The dorsoventral patterning of Musca domestica embryos: insights into BMP/Dpp evolution from the base of the lower cyclorraphan flies. EvoDevo, 2018, 9, 13.	3.2	5
46	Molecular characterization of a novel patchedâ€related protein in <i>Apis mellifera</i> and <i>Drosophila melanogaster</i> . Archives of Insect Biochemistry and Physiology, 2008, 68, 156-170.	1.5	4
47	Nutrient Scarcity in a New Defined Medium Reveals Metabolic Resistance to Antibiotics in the Fish Pathogen Piscirickettsia salmonis. Frontiers in Microbiology, 2021, 12, 734239.	3.5	4
48	Expression pattern of DMAP-85 during Drosophila embryonic development. Mechanisms of Development, 2001, 108, 197-201.	1.7	0