Nava Dekel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11560535/publications.pdf

Version: 2024-02-01

89 papers 5,705 citations

39 h-index 74 g-index

90 all docs 90 docs citations

90 times ranked 4430 citing authors

#	Article	IF	Citations
1	Prediction of Ovarian Follicular Dominance by MRI Phenotyping of Hormonally Induced Vascular Remodeling. Frontiers in Medicine, 2021, 8, 711810.	2.6	O
2	TNF- $\hat{l}\pm$ Regulated Endometrial Stroma Secretome Promotes Trophoblast Invasion. Frontiers in Immunology, 2021, 12, 737401.	4.8	17
3	Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. International Journal of Molecular Sciences, 2020, 21, 4565.	4.1	83
4	Hyaluronan control of the primary vascular barrier during early mouse pregnancy is mediated by uterine NK cells. JCI Insight, 2020, 5, .	5.0	7
5	High cGMP and low PDE3A activity are associated with oocyte meiotic incompetence. Cell Cycle, 2019, 18, 2629-2640.	2.6	3
6	The effect of repeated biopsy on pre-implantation genetic testing for monogenic diseases (PGT-M) treatment outcome. Journal of Assisted Reproduction and Genetics, 2019, 36, 159-164.	2.5	7
7	Vasorin: a newly identified regulator of ovarian folliculogenesis. FASEB Journal, 2018, 32, 2124-2136.	0.5	18
8	Polar Body Extrusion and Ovulation. , 2018, , 197-203.		1
9	Ovarian Folliculogenesis. Results and Problems in Cell Differentiation, 2016, 58, 167-190.	0.7	148
10	Appropriate expression of Ube2C and Ube2S controls the progression of the first meiotic division. FASEB Journal, 2015, 29, 4670-4681.	0.5	29
11	Expression and regulation of the tumor suppressor, SEF, during folliculogenesis in humans and mice. Reproduction, 2014, 148, 507-517.	2.6	5
12	Implantation: Mutual Activity of Sex Steroid Hormones and the Immune System Guarantee the Maternal–Embryo Interaction. Seminars in Reproductive Medicine, 2014, 32, 337-345.	1.1	17
13	The Role of Inflammation for a Successful Implantation. American Journal of Reproductive Immunology, 2014, 72, 141-147.	1.2	179
14	Ovarian Dendritic Cells Act as a Double-Edged Pro-Ovulatory and Anti-Inflammatory Sword. Molecular Endocrinology, 2014, 28, 1039-1054.	3.7	32
15	Blastocyst implantation failure relates to impaired translational machinery gene expression. Reproduction, 2014, 148, 87-98.	2.6	11
16	Molecular participants in regulation of the meiotic cell cycle in mammalian oocytes. Reproduction, Fertility and Development, 2013, 25, 484.	0.4	7
17	Cell Lineage Analysis of the Mammalian Female Germline. PLoS Genetics, 2012, 8, e1002477.	3.5	60
18	From ubiquitinâ€proteasomal degradation to CDK1 inactivation: requirements for the first polar body extrusion in mouse oocytes. FASEB Journal, 2012, 26, 4495-4505.	0.5	17

#	Article	IF	CITATIONS
19	An <i>In Vitro</i> Model for the Study of Human Implantation. American Journal of Reproductive Immunology, 2012, 67, 169-178.	1.2	30
20	Preparation and evaluation of oocytes for ICSI., 2012, , 114-121.		0
21	Functional Phenotyping of the Maternal Albumin Turnover in the Mouse Placenta by Dynamic Contrast-Enhanced MRI. Molecular Imaging and Biology, 2011, 13, 481-492.	2.6	24
22	Reactive oxygen species are indispensable in ovulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1462-1467.	7.1	277
23	Colon Stem Cell and Crypt Dynamics Exposed by Cell Lineage Reconstruction. PLoS Genetics, 2011, 7, e1002192.	3.5	52
24	Survival and Size Are Differentially Regulated by Placental and Fetal PKBalpha/AKT1 in Mice1. Biology of Reproduction, 2011, 84, 537-545.	2.7	24
25	REVIEW ARTICLE: Inflammation and Implantation. American Journal of Reproductive Immunology, 2010, 63, 17-21.	1.2	226
26	Sustained Activity of the EGF Receptor Is an Absolute Requisite for LH-Induced Oocyte Maturation and Cumulus Expansion. Molecular Endocrinology, 2010, 24, 402-411.	3.7	86
27	Epithelial Cell Transforming Protein 2 (ECT2) Depletion Blocks Polar Body Extrusion and Generates Mouse Oocytes Containing Two Metaphase II Spindles. Endocrinology, 2010, 151, 755-765.	2.8	20
28	Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertility and Sterility, 2010, 94, 2030-2036.	1.0	309
29	Master Regulators of Female Fertility. New England Journal of Medicine, 2009, 361, 718-719.	27.0	10
30	Hormonal Regulation of GnRH and $LH\hat{l}^2$ mRNA Expression in Cultured Rat Granulosa Cells. Journal of Molecular Neuroscience, 2009, 39, 78-85.	2.3	9
31	Endometrial biopsy-induced gene modulation: first evidence for the expression of bladder-transmembranal uroplakin Ib in human endometrium. Fertility and Sterility, 2009, 91, 1042-1049.e9.	1.0	104
32	Gap junctions in the ovary: Expression, localization and function. Molecular and Cellular Endocrinology, 2008, 282, 18-25.	3.2	117
33	Local production of the gonadotropic hormones in the rat ovary. Molecular and Cellular Endocrinology, 2008, 282, 32-38.	3.2	22
34	Oocyte-directed depletion of connexin43 using the Cre-LoxP system leads to subfertility in female mice. Developmental Biology, 2008, 313, 1-12.	2.0	31
35	Estimating Cell Depth from Somatic Mutations. PLoS Computational Biology, 2008, 4, e1000058.	3.2	35
36	Inhibition of Rat Oocyte Maturation and Ovulation by Nitric Oxide: Mechanism of Action 1. Biology of Reproduction, 2008, 78, 1111-1118.	2.7	73

#	Article	IF	Citations
37	Molecular characterization and bioinformatics analysis of Ncoa7B, a novel ovulation-associated and reproduction system-specific Ncoa7 isoform. Reproduction, 2008, 135, 321-333.	2.6	18
38	Uterine DCs are crucial for decidua formation during embryo implantation in mice. Journal of Clinical Investigation, 2008, 118, 3954-65.	8.2	292
39	Low expression of COXâ€2, reduced cumulus expansion, and impaired ovulation in SULT1E1â€deficient mice. FASEB Journal, 2007, 21, 1893-1901.	0.5	41
40	Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Molecular and Cellular Endocrinology, 2006, 252, 102-106.	3.2	60
41	MRI analysis of angiogenesis during mouse embryo implantation. Magnetic Resonance in Medicine, 2006, 55, 1013-1022.	3.0	48
42	Cytoplasmic polyadenylation controls cdc25B mRNA translation in rat oocytes resuming meiosis. Reproduction, 2006, 132, 21-31.	2.6	13
43	An active protein kinase A (PKA) is involved in meiotic arrest of rat growing oocytes. Reproduction, 2006, 132, 33-43.	2.6	49
44	Disruption of Gap Junctional Communication within the Ovarian Follicle Induces Oocyte Maturation. Endocrinology, 2006, 147, 2280-2286.	2.8	167
45	Mitogen-Activated Protein Kinase Mediates Luteinizing Hormone-Induced Breakdown of Communication and Oocyte Maturation in Rat Ovarian Follicles. Endocrinology, 2005, 146, 1236-1244.	2.8	134
46	Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Molecular and Cellular Endocrinology, 2005, 234, 19-25.	3.2	100
47	Luteinizing Hormone-Induced Connexin 43 Down-Regulation: Inhibition of Translation. Endocrinology, 2004, 145, 1617-1624.	2.8	65
48	Selective degradation of cyclin B1 mRNA in rat oocytes by RNA interference (RNAi). Journal of Molecular Endocrinology, 2004, 33, 73-85.	2.5	23
49	Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertility and Sterility, 2003, 79, 1317-1322.	1.0	413
50	Maturation-Promoting Factor Governs Mitogen-Activated Protein Kinase Activation and Interphase Suppression During Meiosis of Rat Oocytes1. Biology of Reproduction, 2003, 68, 1282-1290.	2.7	42
51	cAMP-Dependent PKA Negatively Regulates Polyadenylation of c- <i>mos</i> mRNA in Rat Oocytes. Molecular Endocrinology, 2002, 16, 331-341.	3.7	38
52	Connexin43 in Rat Oocytes: Developmental Modulation of Its Phosphorylation 1. Biology of Reproduction, 2002, 66, 568-573.	2.7	39
53	The ovarian gap junction protein connexin43: regulation by gonadotropins. Trends in Endocrinology and Metabolism, 2002, 13, 310-313.	7.1	65
54	Translational and post-translational modifications in meiosis of the mammalian oocyte. Molecular and Cellular Endocrinology, 2002, 187, 161-171.	3.2	19

#	Article	IF	Citations
55	Involvement of endothelin-1 and its receptors in PGF2?-induced luteolysis in the rat. Molecular Reproduction and Development, 2002, 63, 71-78.	2.0	22
56	Inactivation of M-Phase Promoting Factor at Exit from First Embryonic Mitosis in the Rat Is Independent of Cyclin B1 Degradation1. Biology of Reproduction, 2001, 64, 871-878.	2.7	51
57	The Proteasome Is Involved in the First Metaphase-to-Anaphase Transition of Meiosis in Rat Oocytes1. Biology of Reproduction, 2000, 62, 1270-1277.	2.7	113
58	Temporal analysis of connexin43 protein and gene expression throughout the menstrual cycle in human endometrium. Fertility and Sterility, 2000, 73, 381-386.	1.0	38
59	Developmental expression and regulation of the gap junction protein and transcript in rat ovaries. Molecular Reproduction and Development, 1997, 47, 231-239.	2.0	63
60	Experimental extension of the time interval between oocyte maturation and ovulation: effect on fertilization first cleavage. Fertility and Sterility, 1995, 64, 1023-1028.	1.0	7
61	Molecular control of meiosis. Trends in Endocrinology and Metabolism, 1995, 6, 165-169.	7.1	25
62	Molecular Mechanisms in Ovulation. , 1994, , 207-258.		34
63	Maintenance of Meiotic Arrest by a Phosphorylated p34cdc2 is Independent of Cyclic Adenosine $3\hat{a}\in^2$, $5\hat{a}\in^2$ -Monophosphate. Biology of Reproduction, 1994, 51, 956-962.	2.7	38
64	Meiotic Arrest in Incompetent Rat Oocytes Is Not Regulated by cAMP. Developmental Biology, 1994, 166, 11-17.	2.0	27
65	Fertilization and early development of rat oocytes induced to mature by forskolin. Molecular and Cellular Endocrinology, 1993, 96, 61-68.	3.2	4
66	Maturation of the rat cumulus-oocyte complex: Structure and function. Molecular Reproduction and Development, 1991, 28, 297-306.	2.0	36
67	Involvement of Calcium in the Transduction of the Hormonal Signal for Induction of Oocyte Maturation. , 1990, , 113-118.		0
68	Regulation of Oocyte Maturation Annals of the New York Academy of Sciences, 1988, 541, 211-216.	3.8	86
69	Dissociation between the inhibitory and the stimulatory action of cAMP on maturation of rat oocytes. Molecular and Cellular Endocrinology, 1988, 56, 115-121.	3.2	73
70	RECEPTORS FOR GONADOTROPIN RELEASING HORMONE ARE PRESENT IN RAT OOCYTES. Endocrinology, 1988, 123, 1205-1207.	2.8	49
71	Induction of Maturation in Follicle-Enclosed Oocytes: The Response to Gonadotropins at Different Stages of Follicular Development1. Biology of Reproduction, 1988, 38, 517-521.	2.7	26
72	Interaction Between the Oocyte and the Granulosa Cells in the Preovulatory Follicle., 1987,, 197-209.		14

#	Article	IF	CITATIONS
73	Hormonal Control of Ovulation. , 1986, , 57-90.		17
74	Mammalian fertilization as seen with the scanning electron microscope. American Journal of Anatomy, 1985, 174, 357-372.	1.0	26
75	Epidermal Growth Factor Induces Maturation of Rat Follicle-Enclosed Oocytes*. Endocrinology, 1985, 116, 406-409.	2.8	183
76	Activators of protein kinase C stimulate meiotic maturation of rat oocytes. Biochemical and Biophysical Research Communications, 1985, 132, 570-574.	2.1	67
77	Gonadotropin releasing hormone: Regulation of phospholipid turnover and prostaglandin production in ovarian granulosa cells. Life Sciences, 1984, 35, 389-398.	4.3	10
78	Regulation of Oocyte Maturation. , 1984, , 325-336.		0
79	Dissociation between the direct stimulatory and inhibitory effects of a gonadotropin-releasing hormone analog on ovarian functions. Molecular and Cellular Endocrinology, 1983, 31, 261-270.	3.2	26
80	Effect of gonadotropins and prostaglandin on cumulus mucification in cultures of intact follicles. The Journal of Experimental Zoology, 1982, 221, 275-282.	1.4	28
81	Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH. Developmental Biology, 1981, 86, 356-362.	2.0	219
82	Binding of Human Chorionic Gonadotropin by Rat Cumuli Oophori and Granulosa Cells: A Comparative Study*. Endocrinology, 1980, 106, 1114-1118.	2.8	108
83	Cyclic AMP, Prostaglandin E2 and Steroids: Possible Mediators in the Rat Cumulus Oophorus Mucification. Biology of Reproduction, 1980, 22, 289-296.	2.7	19
84	Development of the rat oocyte in vitro: Inhibition and induction of maturation in the presence or absence of the cumulus oophorus. Developmental Biology, 1980, 75, 247-254.	2.0	214
85	Maturation of the Rat Cumulus Oophorus: A Scanning Electron Microscopic Study. Biology of Reproduction, 1979, 21, 9-18.	2.7	67
86	Maturational Effects of Gonadotropins on the Cumulus-Oocyte Complex of the Rat. Biology of Reproduction, 1979, 20, 191-197.	2.7	108
87	Cellular associations in the rat oocyte-cumulus cell complex: Morphology and ovulatory changes. Gamete Research, 1978, 1, 47-57.	1.7	42
88	Induction <i>in Vitro</i> of Mucification of Rat Cumulus Oophorus by Gonadotrophins and Adenosine 3′,5′-Monophosphate*. Endocrinology, 1978, 102, 1797-1802.	2.8	118
89	Effects of Gonadotrophins on the Cumulus Oophorus of Isolated Rat Graafian Follicles. Acta Physiologica Scandinavica, 1976, 96, 558-568.	2.2	31