
Jesper Tegnér

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11560382/publications.pdf Version: 2024-02-01

IFSDED TECNÃOD

#	Article	IF	CITATIONS
1	A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics, 2013, 29, 189-196.	4.1	1,295
2	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.	28.9	667
3	Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6163-6168.	7.1	582
4	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
5	Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5944-5949.	7.1	380
6	Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6802-6807.	7.1	305
7	Data integration in the era of omics: current and future challenges. BMC Systems Biology, 2014, 8, I1.	3.0	300
8	Temporally Irregular Mnemonic Persistent Activity in Prefrontal Neurons of Monkeys During a Delayed Response Task. Journal of Neurophysiology, 2003, 90, 3441-3454.	1.8	235
9	Intrinsic function of a neuronal network — a vertebrate central pattern generator. Brain Research Reviews, 1998, 26, 184-197.	9.0	217
10	An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics, 2013, 8, 333-346.	2.7	192
11	An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics, 2014, 9, 1557-1569.	2.7	184
12	DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.	12.8	147
13	The dynamical stability of reverberatory neural circuits. Biological Cybernetics, 2002, 87, 471-481.	1.3	130
14	Stronger Synaptic Connectivity as a Mechanism behind Development of Working Memory-related Brain Activity during Childhood. Journal of Cognitive Neuroscience, 2007, 19, 750-760.	2.3	103
15	Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naÃ ⁻ ve-to-memory B-cell transition. Nature Communications, 2015, 6, 7335.	12.8	81
16	Transcriptional Profiling Uncovers a Network of Cholesterol-Responsive Atherosclerosis Target Genes. PLoS Genetics, 2008, 4, e1000036.	3.5	67
17	Low-Voltage-Activated Calcium Channels in the Lamprey Locomotor Network: Simulation and Experiment. Journal of Neurophysiology, 1997, 77, 1795-1812.	1.8	53
18	Perturbations to uncover gene networks. Trends in Genetics, 2007, 23, 34-41.	6.7	51

Jesper Tegnér

#	Article	IF	CITATIONS
19	Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. EBioMedicine, 2019, 43, 411-423.	6.1	45
20	Integrated approaches to uncovering transcription regulatory networks in mammalian cells. Genomics, 2008, 91, 219-231.	2.9	38
21	Systems Biology Is Taking Off. Genome Research, 2003, 13, 2377-2380.	5.5	36
22	Modulation of burst frequency by calcium-dependent potassium channels in the lamprey locomotor system: dependence of the activity level. Journal of Computational Neuroscience, 1998, 5, 121-140.	1.0	30
23	Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clinical Epigenetics, 2019, 11, 86.	4.1	24
24	Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits. Journal of Lipid Research, 2007, 48, 267-277.	4.2	19
25	Interactive Effects of the GABABergic Modulation of Calcium Channels and Calcium-Dependent Potassium Channels in Lamprey. Journal of Neurophysiology, 1999, 81, 1318-1329.	1.8	17
26	Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task. Biological Cybernetics, 2007, 96, 407-419.	1.3	17
27	Detection of compound mode of action by computational integration of whole-genome measurements and genetic perturbations. BMC Bioinformatics, 2006, 7, 51.	2.6	16
28	A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160144.	3.4	14
29	HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation. Bioinformatics, 2017, 33, 3964-3972.	4.1	11
30	GABAB-ergic modulation of burst rate and intersegmental coordination in lamprey: experiments and simulations. Brain Research, 2000, 864, 81-86.	2.2	8
31	The Information-Theoretic and Algorithmic Approach to Human, Animal, and Artificial Cognition. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2017, , 117-139.	0.3	4
32	Activity Dependent Modulation of the Burst Rate by Calcium-Dependent Potassium Channels in Lamprey. , 1998, , 549-554.		3
33	Introduction to Data Types in Epigenomics. Translational Bioinformatics, 2015, , 3-34.	0.0	2
34	Evidence of Highly Regulated Genes (in-Hubs) in Gene Networks of Saccharomyces Cerevisiae. Bioinformatics and Biology Insights, 2008, 2, BBI.S853.	2.0	1
35	Adaptive input data transformation for improved network reconstruction with information theoretic algorithms. Statistical Applications in Genetics and Molecular Biology, 2016, 15, 507-520.	0.6	0
36	Network Biology Empowering Detection and Understanding of Interactions Between Genetic Factors in Development of Complex Phenotypes. , 2014, , 175-194.		0