
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155928/publications.pdf Version: 2024-02-01

SHUANCL

#	Article	IF	CITATIONS
1	Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 849-864.	21.0	624
2	Activity–Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal–Nitrogen–Carbon Catalysts. Journal of the American Chemical Society, 2019, 141, 12372-12381.	13.7	493
3	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 2017, 117, 1826-1914.	47.7	425
4	Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013, 62, 296-301.	10.3	415
5	Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage. ACS Nano, 2012, 6, 8349-8356.	14.6	402
6	Active Salt/Silicaâ€Templated 2D Mesoporous FeCoâ€N _{<i>x</i>} â€Carbon as Bifunctional Oxygen Electrodes for Zinc–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 1856-1862.	13.8	340
7	Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 6623-6630.	13.7	340
8	Self-Assembled Fe ₂ O ₃ /Graphene Aerogel with High Lithium Storage Performance. ACS Applied Materials & Interfaces, 2013, 5, 3764-3769.	8.0	296
9	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie - International Edition, 2018, 57, 8921-8926.	13.8	291
10	Alternating Stacked Grapheneâ€Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for Highâ€Energy Microâ€Supercapacitors. Advanced Materials, 2015, 27, 4054-4061.	21.0	290
11	Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Advanced Materials, 2021, 33, e2006042.	21.0	267
12	Carbonâ€Based Microbialâ€Fuelâ€Cell Electrodes: From Conductive Supports to Active Catalysts. Advanced Materials, 2017, 29, 1602547.	21.0	252
13	The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science, 2012, 417-418, 228-236.	8.2	248
14	Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. Journal of Materials Chemistry B, 2013, 1, 265-275.	5.8	237
15	Oxygen-evolving catalytic atoms on metal carbides. Nature Materials, 2021, 20, 1240-1247.	27.5	235
16	In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 2019, 9, 1283-1288.	11.2	216
17	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb ₂ O _{5–<i>x</i>} Nanocluster toward Superior Li–S Performance. ACS Nano, 2020, 14, 4849-4860.	14.6	201
18	Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. Journal of Hazardous Materials, 2013, 263, 467-478.	12.4	190

#	Article	IF	CITATIONS
19	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e2003	0651.0	183
20	Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nature Communications, 2020, 11, 4712.	12.8	183
21	Graphene: A Twoâ€Ðimensional Platform for Lithium Storage. Small, 2013, 9, 1173-1187.	10.0	176
22	Protonated Imine‣inked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	13.8	171
23	Structure, Activity, and Faradaic Efficiency of Nitrogenâ€Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. ChemSusChem, 2018, 11, 3388-3395.	6.8	148
24	Ir–O–V Catalytic Group in Ir-Doped NiV(OH) ₂ for Overall Water Splitting. ACS Energy Letters, 2019, 4, 1823-1829.	17.4	147
25	Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chemical Engineering Journal, 2013, 228, 468-481.	12.7	142
26	General and Biomimetic Approach to Biopolymer-Functionalized Graphene Oxide Nanosheet through Adhesive Dopamine. Biomacromolecules, 2012, 13, 4236-4246.	5.4	141
27	2D Porous Carbons prepared from Layered Organic–Inorganic Hybrids and their Use as Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2017, 29, 1700707.	21.0	129
28	Atomic Fe–N _x Coupled Openâ€Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg–Air Batteries. Advanced Materials, 2018, 30, e1802669.	21.0	128
29	Polyaniline oupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angewandte Chemie - International Edition, 2013, 52, 12105-12109.	13.8	117
30	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	11.2	110
31	Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst. Chemistry of Materials, 2019, 31, 3274-3280.	6.7	108
32	Metalâ€Organic Precursor–Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807419.	14.9	104
33	Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 2019, 27, 80-90.	3.0	98
34	Assembly of Tin Oxide/Graphene Nanosheets into 3D Hierarchical Frameworks for Highâ€Performance Lithium Storage. ChemSusChem, 2013, 6, 1510-1515.	6.8	89
35	Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. Journal of Materials Chemistry A, 2020, 8, 3168-3179.	10.3	88
36	Electrochemicalâ€Reductionâ€Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithiumâ€5torage Performance. Chemistry - A European Journal, 2013, 19, 10895-10902.	3.3	86

#	Article	IF	CITATIONS
37	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie, 2018, 130, 9059-9064.	2.0	81
38	Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption. ACS Catalysis, 2019, 9, 4841-4852.	11.2	79
39	Ordered mesoporous WO _{2.83} : selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. Journal of Materials Chemistry A, 2018, 6, 2249-2256.	10.3	76
40	Transition Metal and Metal–N <i>_x</i> Codoped MOFâ€Derived Fentonâ€Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. Small, 2020, 16, e2005060.	10.0	72
41	Metal–Organicâ€Frameworkâ€Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries. Advanced Materials, 2021, 33, e2008784.	21.0	67
42	Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2020, 12, 46045-46056.	8.0	66
43	Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Applied Catalysis B: Environmental, 2021, 293, 120176.	20.2	66
44	Interfacial Atom‣ubstitution Engineered Transitionâ€Metal Hydroxide Nanofibers with Highâ€Valence Fe for Efficient Electrochemical Water Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
45	<i>In situ</i> synthesis of a Fe ₃ S ₄ /MIL-53(Fe) hybrid catalyst for an efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2019, 55, 4570-4573.	4.1	63
46	Integration of Semiconductor Oxide and a Microporous (3,10)-Connected Co6-Based Metal–Organic Framework for Enhanced Oxygen Evolution Reaction. Inorganic Chemistry, 2019, 58, 5837-5843.	4.0	61
47	A ZnO–graphene hybrid with remarkably enhanced lithium storage capability. Physical Chemistry Chemical Physics, 2014, 16, 25846-25853.	2.8	59
48	Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. Nano-Micro Letters, 2019, 11, 87.	27.0	59
49	Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today, 2019, 26, 57-97.	11.9	58
50	Active Salt/Silicaâ€Templated 2D Mesoporous FeCoâ€N _{<i>x</i>} â€Carbon as Bifunctional Oxygen Electrodes for Zinc–Air Batteries. Angewandte Chemie, 2018, 130, 1874-1880.	2.0	56
51	Cobaltâ€Exchanged Poly(Heptazine Imides) as Transition Metal–N <i>_x</i> Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1903942.	21.0	56
52	Polysulfide Catalytic Materials for Fastâ€Kinetic Metal–Sulfur Batteries: Principles and Active Centers. Advanced Science, 2022, 9, e2102217.	11.2	56
53	Metal–Nitrogen Doping of Mesoporous Carbon/Graphene Nanosheets by Selfâ€Templating for Oxygen Reduction Electrocatalysts. ChemSusChem, 2014, 7, 3002-3006.	6.8	52
54	Common Strategy: Mounting the Rod-like Ni-Based MOF on Hydrangea-Shaped Nickel Hydroxide for Superior Electrocatalytic Methanol Oxidation Reaction. ACS Applied Materials & Interfaces, 2021, 13, 26472-26481.	8.0	51

#	Article	IF	CITATIONS
55	A Waterâ€Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers. Advanced Materials, 2018, 30, 1705452.	21.0	50
56	Recent Advances in ZIFâ€Derived Atomic Metal–N–C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. Small, 2022, 18, e2105409.	10.0	50
57	Ionic Liquid-Assisted Synthesis of Mesoporous Carbons with Surface-Enriched Nitrogen for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 3912-3920.	8.0	49
58	Lipidomic changes during different growth stages of Nitzschia closterium f. minutissima. Metabolomics, 2013, 9, 300-310.	3.0	48
59	Stable Bimetal-MOF Ultrathin Nanosheets for Pseudocapacitors with Enhanced Performance. Inorganic Chemistry, 2019, 58, 9543-9547.	4.0	48
60	New opportunities for emerging 2D materials in bioelectronics and biosensors. Current Opinion in Biomedical Engineering, 2020, 13, 32-41.	3.4	48
61	Graphene aerogel supported Fe ₅ (PO ₄) ₄ (OH) ₃ ·2H ₂ O microspheres as high performance cathode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6174-6179	10.3	46
62	Polyanilineâ€Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angewandte Chemie, 2013, 125, 12327-12331.	2.0	45
63	Iron-catalyzed one-pot sequential transformations: Synthesis of quinazolinones via oxidative Csp3H bond activation using a new metal-organic framework as catalyst. Journal of Catalysis, 2019, 370, 11-20.	6.2	42
64	Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy, 2021, 83, 105734.	16.0	41
65	Heterogeneous Ni-MOF/V ₂ CT _{<i>x</i>} –MXene hierarchically-porous nanorods for robust and high energy density hybrid supercapacitors. Journal of Materials Chemistry A, 2022, 10, 12225-12234.	10.3	41
66	Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 384-396.	7.4	40
67	Toward safe, efficient and multifunctional 3D blood-contact adsorbents engineered by biopolymers/graphene oxide gels. RSC Advances, 2013, 3, 22120.	3.6	37
68	Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry, 2019, 21, 4887-4918.	9.0	37
69	Cobalt-Based Double Catalytic Sites on Mesoporous Carbon as Reversible Polysulfide Catalysts for Fast-Kinetic Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51174-51185.	8.0	31
70	Catalyst Preoxidation and EDTA Electrolyte Additive Remedy Activity and Selectivity Declines During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2019, 123, 2165-2174.	3.1	30
71	Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets. Journal of Materials Chemistry C, 2014, 2, 1730.	5.5	29
72	Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium. Journal of Electroanalytical Chemistry, 2021, 896, 115197.	3.8	29

#	Article	IF	CITATIONS
73	Proximate, amino acid and lipid compositions in <i>Sinonovacula constricta</i> (Lamarck) reared at different salinities. Journal of the Science of Food and Agriculture, 2017, 97, 4476-4483.	3.5	28
74	In Situ Synthesis of Nano CuS-Embedded MOF Hierarchical Structures and Application in Dye Adsorption and Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5698-5706.	5.1	28
75	A multivalent polyanion-dispersed carbon nanotube toward highly bioactive nanostructured fibrous stem cell scaffolds. Applied Materials Today, 2019, 16, 518-528.	4.3	28
76	Advanced electrocatalysts with Dual-metal doped carbon Materials: Achievements and challenges. Chemical Engineering Journal, 2022, 428, 132558.	12.7	28
77	Assembling and Regulating of Transition Metalâ€Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. Small, 2022, 18, e2105763.	10.0	28
78	Lipidomic analysis can distinguish between two morphologically similar strains of <i>Nannochloropsis oceanica</i> . Journal of Phycology, 2015, 51, 264-276.	2.3	27
79	Superstructures of Organic–Polyoxometalate Coâ€crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
80	High-Valence Transition Metal Modified FeNiV Oxides Anchored on Carbon Fiber Cloth for Efficient Oxygen Evolution Catalysis. Advanced Fiber Materials, 2022, 4, 774-785.	16.1	24
81	<i>In situ</i> synthesis of hierarchical NiCo-MOF@Ni _{lâ[*]x} Co _x (OH) ₂ heterostructures for enhanced pseudocapacitor and oxygen evolution reaction performances. Dalton Transactions, 2021, 50, 3060-3066.	3.3	23
82	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19950-19956.	2.0	22
83	Cationic–anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 2325-2333.	10.3	20
84	Laser Synthesis of Iridium Nanospheres for Overall Water Splitting. Materials, 2019, 12, 3028.	2.9	19
85	Thermal treatment for promoting interfacial interaction in Co-BDC/Ti3C2T hybrid nanosheets for hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 633-640.	9.4	19
86	Laserâ€Ablationâ€Produced Cobalt Nickel Phosphate with Highâ€Valence Nickel Ions as an Active Catalyst for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2020, 26, 2793-2797.	3.3	18
87	Synthesis of Semiconducting 2H-Phase WTe ₂ Nanosheets with Large Positive Magnetoresistance. Inorganic Chemistry, 2020, 59, 11935-11939.	4.0	17
88	High-efficiency enhancement on thermal and electrical properties of epoxy nanocomposites with core-shell carbon foam template-coated graphene. Composites Part A: Applied Science and Manufacturing, 2019, 120, 95-105.	7.6	16
89	Synthesis and Electronic Modulation of Nanostructured Layered Double Hydroxides for Efficient Electrochemical Oxygen Evolution. ChemSusChem, 2021, 14, 5112-5134.	6.8	16
90	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie, 2020, 132, 22276-22283.	2.0	15

#	Article	IF	CITATIONS
91	A New Synthetic Pathway to Triphenylpyridines via Cascade Reactions Utilizing a New Ironâ€Organic Framework as a Recyclable Heterogeneous Catalyst. European Journal of Organic Chemistry, 2019, 2019, 2382-2389.	2.4	13
92	Effect of salinity on volatiles in the razor clam investigated by head space-solid phase microextraction/gas chromatography-mass spectrometry. Fisheries Science, 2019, 85, 137-146.	1.6	13
93	Characterization of the triacylglycerol profile in marine diatoms by ultra performance liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight mass spectrometry. Journal of Applied Phycology, 2014, 26, 1389-1398.	2.8	11
94	Pd/meso-CoO derived from in situ reduction of the one-step synthesized Pd/meso-Co3O4: high-performance catalysts for benzene combustion. New Journal of Chemistry, 2019, 43, 12358-12368.	2.8	11
95	Convenient synthesis of polymetallic metal–organic gels for efficient methanol electro-oxidation. Inorganic Chemistry Frontiers, 2021, 8, 927-933.	6.0	11
96	Multivalent Polyanionic 2D Nanosheets Functionalized Nanofibrous Stem Cellâ€based Neural Scaffolds. Advanced Functional Materials, 2021, 31, 2010145.	14.9	11
97	Phosphorus modulated porous CeO2 nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries. Journal of Materials Science and Technology, 2022, 131, 212-220.	10.7	11
98	Structural elucidation of coâ€eluted triglycerides in the marine diatom model organism <i>Thalassiosira pseudonana</i> by ultraâ€performance liquid chromatography/quadrupole timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 245-255.	1.5	10
99	Interfacial Atomâ€6ubstitution Engineered Transitionâ€Metal Hydroxide Nanofibers with Highâ€Valence Fe for Efficient Electrochemical Water Oxidation. Angewandte Chemie, 2022, 134, .	2.0	10
100	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion. , 2020, , 393-423.		8
101	Facile in Situ Transformation of NiOOH into MOF-74(Ni)/NiO OH Heterogeneous Composite for Enchancing Electrocatalytic Methanol Oxidation. Molecules, 2022, 27, 2113.	3.8	4
102	Hierarchical co-assembly avenue to uniform rhombododecahedral magnetic mesoporous graphitic composites. Journal of Colloid and Interface Science, 2014, 414, 59-65.	9.4	2
103	Graphene Nanoinks: A Waterâ€Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers (Adv. Mater. 5/2018). Advanced Materials, 2018, 30, 1870030.	21.0	2
104	Mg-Air Batteries: Atomic Fe-Nx Coupled Open-Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg-Air Batteries (Adv. Mater. 40/2018). Advanced Materials, 2018, 30, 1870303.	21.0	2
105	Superstructures of Organic–Polyoxometalate Co rystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie, 2022, 134, .	2.0	2
106	Spheroidization of Nickel Powder and Coating with Carbon Layer through Laser Heating. Materials, 2018, 11, 1641.	2.9	1
107	In Situ Synthesis of Surface-Mounted Novel Nickel(II) Trimer-Based MOF on Nickel Oxide Hydroxide Heterostructures for Enhanced Methanol Electro-Oxidation. Frontiers in Chemistry, 2021, 9, 780688.	3.6	1