Shuo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11558163/publications.pdf

Version: 2024-02-01

27	2,684	23	27
papers	citations	h-index	g-index
30	30	30	3408
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gold Nanoclusters Promote Electrocatalytic Water Oxidation at the Nanocluster/CoSe < sub > 2 < /sub > Interface. Journal of the American Chemical Society, 2017, 139, 1077-1080.	13.7	294
2	Opportunities and Challenges in CO ₂ Reduction by Gold- and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Letters, 2018, 3, 452-462.	17.4	269
3	Structure Determination of [Au ₁₈ (SR) ₁₄]. Angewandte Chemie - International Edition, 2015, 54, 3140-3144.	13.8	213
4	Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation. Angewandte Chemie - International Edition, 2013, 52, 7472-7476.	13.8	206
5	Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nature Communications, 2016, 7, 13240.	12.8	205
6	Atomically Tailored Gold Nanoclusters for Catalytic Application. Angewandte Chemie - International Edition, 2019, 58, 8291-8302.	13.8	200
7	Tri-icosahedral Gold Nanocluster [Au ₃₇ (PPh ₃) ₁₀ (SC ₂ H ₄ Ph) ₁₀ X _{Linear Assembly of Icosahedral Building Blocks. ACS Nano, 2015, 9, 8530-8536.}	ıb ı4.6 /sub	>] k& up>+<
8	Mixedâ€PtPdâ€Shell PtPdCu Nanoparticle Nanotubes Templated from Copper Nanowires as Efficient and Highly Durable Electrocatalysts. Advanced Energy Materials, 2012, 2, 1182-1187.	19.5	164
9	Toward the Tailoring Chemistry of Metal Nanoclusters for Enhancing Functionalities. Accounts of Chemical Research, 2018, 51, 2764-2773.	15.6	163
10	Influence of Atomic-Level Morphology on Catalysis: The Case of Sphere and Rod-Like Gold Nanoclusters for CO ₂ Electroreduction. ACS Catalysis, 2018, 8, 4996-5001.	11.2	142
11	Atomically Precise Gold Nanoclusters Accelerate Hydrogen Evolution over MoS ₂ Nanosheets: The Dual Interfacial Effect. Small, 2017, 13, 1701519.	10.0	92
12	Elucidating the active sites for CO ₂ electroreduction on ligand-protected Au ₂₅ nanoclusters. Catalysis Science and Technology, 2018, 8, 3795-3805.	4.1	76
13	Atomically Tailored Gold Nanoclusters for Catalytic Application. Angewandte Chemie, 2019, 131, 8377-8388.	2.0	59
14	Structure Determination of [Au ₁₈ (SR) ₁₄]. Angewandte Chemie, 2015, 127, 3183-3187.	2.0	56
15	Interface Engineering of Gold Nanoclusters for CO Oxidation Catalysis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29425-29434.	8.0	53
16	All-thiolate-protected silver and silver-rich alloy nanoclusters with atomic precision: stable sizes, structural characterization and optical properties. CrystEngComm, 2016, 18, 3996-4005.	2.6	45
17	Oxidation-Induced Transformation of Eight-Electron Gold Nanoclusters: [Au ₂₃ (SR) ₁₆] ^{â^'} to [Au ₂₈ (SR) ₂₀] ⁰ . Journal of Physical Chemistry Letters, 2017, 8, 866-870.	4.6	45
18	Controlling Ag-doping in [Ag Au _{25â^'x} (SC ₆ H ₁₁) ₁₈] _{]^{â^'}nanc cryogenic optical, electronic and electrocatalytic properties. Nanoscale, 2017, 9, 19183-19190.}	oc tus ters:	43

#	ARTICLE	IF	CITATION
19	Ultrasmall Palladium Nanoclusters as Effective Catalyst for Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 1225-1229.	3.4	35
20	Controlling magnetism of Au ₁₃₃ (TBBT) ₅₂ nanoclusters at single electron level and implication for nonmetal to metal transition. Chemical Science, 2019, 10, 9684-9691.	7.4	35
21	Single-ligand exchange on an Au–Cu bimetal nanocluster and mechanism. Nanoscale, 2018, 10, 12093-12099.	5.6	30
22	Mechanistic insights from atomically precise gold nanocluster-catalyzed reduction of 4-nitrophenol. Progress in Natural Science: Materials International, 2016, 26, 483-486.	4.4	29
23	In situ reduction of well-dispersed nickel nanoparticles on hierarchical nickel silicate hollow nanofibers as a highly efficient transition metal catalyst. RSC Advances, 2016, 6, 32580-32585.	3.6	15
24	Understanding the Single Atom Doping Effects in Oxygen Reduction with Atomically Precise Metal Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 24831-24836.	3.1	7
25	Atomically Precise Gold and Bimetal Nanoclusters as New Model Catalysts. Studies in Surface Science and Catalysis, 2017, 177, 359-408.	1.5	5
26	Fast and accurate prediction of spurious modes in aluminum nitride MEMS resonators using artificial neural network algorithm. , 2017, , .		3
27	Fast and accurate prediction of spurious modes in aluminum nitride MEMS resonators using artificial neural network algorithm. , 2017, , .		1