Friedrich A Grässer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11555721/publications.pdf

Version: 2024-02-01

51 papers 6,416 citations

28 h-index 182427 51 g-index

52 all docs 52 docs citations

times ranked

52

7263 citing authors

#	Article	IF	Citations
1	Identification of Virus-Encoded MicroRNAs. Science, 2004, 304, 734-736.	12.6	1,474
2	Identification of microRNAs of the herpesvirus family. Nature Methods, 2005, 2, 269-276.	19.0	1,073
3	Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathologica, 2013, 126, 881-893.	7.7	427
4	An estimate of the total number of true human miRNAs. Nucleic Acids Research, 2019, 47, 3353-3364.	14.5	400
5	C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathologica, 2014, 128, 485-503.	7.7	300
6	Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Research, 2007, 36, 666-675.	14.5	295
7	Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathologica, 2015, 130, 845-861.	7.7	204
8	Epstein-Barr Virus-Encoded Latent Membrane Protein 1 (LMP1) Induces the Expression of the Cellular MicroRNA miR-146a. RNA Biology, 2007, 4, 131-137.	3.1	183
9	Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathologica, 2015, 130, 537-555.	7.7	157
10	microRNA profiling in Epstein–Barr virus-associated B-cell lymphoma. Nucleic Acids Research, 2011, 39, 1880-1893.	14.5	132
11	A new strategy for the development of monoclonal antibodies for the determination of human procalcitonin in serum samples. Analytical and Bioanalytical Chemistry, 2012, 402, 989-995.	3.7	127
12	In Vitro phosphorylation of SV40 large T antigen. Virology, 1988, 165, 13-22.	2.4	112
13	Downregulation of Sec23A Protein by miRNA-375 in Prostate Carcinoma. Molecular Cancer Research, 2011, 9, 791-800.	3.4	107
14	The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. Molecular Cell, 2016, 63, 110-124.	9.7	107
15	EBV-encoded miRNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 631-640.	1.9	106
16	Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Research, 2007, 35, e73-e73.	14.5	99
17	Characterization of DP103, a Novel DEAD Box Protein That Binds to the Epstein-Barr Virus Nuclear Proteins EBNA2 and EBNA3C. Journal of Biological Chemistry, 1999, 274, 19136-19144.	3.4	93
18	Epstein-Barr Virus Nuclear Antigen 1 Forms a Complex with the Nuclear Transporter Karyopherin $\hat{l}\pm 2$. Journal of Biological Chemistry, 1997, 272, 3999-4005.	3.4	77

#	Article	IF	Citations
19	Comparative microRNA Profiling of Prostate Carcinomas with Increasing Tumor Stage by Deep Sequencing. Molecular Cancer Research, 2014, 12, 250-263.	3.4	75
20	Rat Monoclonal Antibodies Differentiating between the Epstein-Barr Virus Nuclear Antigens 2A (EBNA2A) and 2B (EBNA2B). Virology, 1995, 208, 336-342.	2.4	74
21	Epstein–Barr Virus-Induced Expression of a Novel Human Vault RNA. Journal of Molecular Biology, 2009, 388, 776-784.	4.2	74
22	Micro <scp>RNA</scp> â€142 is mutated in about 20% of diffuse large <scp>B</scp> â€cell lymphoma. Cancer Medicine, 2012, 1, 141-155.	2.8	74
23	Identification of ZNF217, hnRNPâ€K, VEGFâ€A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. International Journal of Cancer, 2013, 132, 775-784.	5.1	70
24	MicroRNA Profiling of Epstein-Barr Virus-Associated NK/T-Cell Lymphomas by Deep Sequencing. PLoS ONE, 2012, 7, e42193.	2.5	65
25	The protoâ€oncogene <scp>ERG</scp> is a target of micro <scp>RNA </scp> <i>miRâ€145</i> in prostate cancer. FEBS Journal, 2013, 280, 2105-2116.	4.7	56
26	Epstein-Barr Virus Nuclear Antigen 2 Binds via Its Methylated Arginine-Glycine Repeat to the Survival Motor Neuron Protein. Journal of Virology, 2003, 77, 5008-5013.	3.4	49
27	Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration. Acta Neuropathologica Communications, 2017, 5, 29.	5.2	43
28	TheLMP1 gene isolated from Russian nasopharyngeal carcinoma has no 30-bp deletion. International Journal of Cancer, 2001, 91, 815-821.	5.1	37
29	The NP9 protein encoded by the human endogenous retrovirus HERVâ€K(HMLâ€2) negatively regulates gene activation of the Epsteinâ€Barr virus nuclear antigen 2 (EBNA2). International Journal of Cancer, 2011, 129, 1105-1115.	5.1	30
30	Phosphorylation of the epstein-barr virus nuclear antigen 2. Biochemical and Biophysical Research Communications, 1992, 186, 1694-1701.	2.1	22
31	Isolation and analysis of two strongly transforming isoforms of the Epstein-Barr-virus(EBV)-encoded latent membrane protein-1 (LMP1) from a single Hodgkin's lymphoma. , 1998, 76, 194-200.		22
32	mi <scp>RNA</scp> expression profiling of Epstein–Barr virusâ€associated <scp>NKTL</scp> cell lines by Illumina deep sequencing. FEBS Open Bio, 2016, 6, 251-263.	2.3	21
33	Immunological Detection of Proteins Associated with the Epstein-Barr Virus Nuclear Antigen 2A. Virology, 1993, 195, 550-560.	2.4	20
34	Expression of Epstein-Barr virus nuclear antigen 1,2A and 2B in the baculovirus expression system: Serological evaluation of human antibodies to these proteins. Journal of Medical Virology, 1993, 39, 233-241.	5.0	19
35	Binding of the Heterogeneous Ribonucleoprotein K (hnRNP K) to the Epstein-Barr Virus Nuclear Antigen 2 (EBNA2) Enhances Viral LMP2A Expression. PLoS ONE, 2012, 7, e42106.	2.5	19
36	Detection of wild type and deleted latent membrane protein 1 (LMP1) of Epstein-Barr virus in clinical biopsy material. Journal of Virological Methods, 2004, 116, 79-88.	2.1	17

#	Article	IF	CITATIONS
37	Asymmetric Arginine dimethylation of Epstein–Barr virus nuclear antigen 2 promotes DNA targeting. Virology, 2010, 397, 299-310.	2.4	16
38	Np9, a cellular protein of retroviral ancestry restricted to human, chimpanzee and gorilla, binds and regulates ubiquitin ligase MDM2. Cell Cycle, 2015, 14, 2619-2633.	2.6	16
39	Expression of deoxyuridine triphosphatase (dUTPase) in colorectal tumours. International Journal of Cancer, 1999, 84, 614-617.	5.1	15
40	Expression of viral and human dUTPase in Epstein-Barr virus-associated diseases. Journal of Medical Virology, 2002, 68, 568-573.	5.0	15
41	HLAâ€DRB1*15:01 is a coâ€receptor for Epstein–Barr virus, linking genetic and environmental risk factors for multiple sclerosis. European Journal of Immunology, 2021, 51, 2348-2350.	2.9	15
42	Functional analysis of different LMP1 proteins isolated from Epstein–Barr virus-positive carriers. Virus Research, 1999, 60, 41-54.	2.2	14
43	Epstein-Barr Virus Infection of Cell Lines Derived from Diffuse Large B-Cell Lymphomas Alters MicroRNA Loading of the Ago2 Complex. Journal of Virology, 2019, 93, .	3.4	12
44	A potential NES of the Epstein-Barr virus nuclear antigen 1 (EBNA1) does not confer shuttling. FEBS Letters, 1999, 447, 311-314.	2.8	8
45	Biochemical characterisation of the proteins encoded by the DiGeorge critical region 6 (DGCR6) genes. Human Genetics, 2005, 117, 70-80.	3.8	8
46	Antibodies against the mono-methylated arginine-glycine repeat (MMA-RG) of the Epstein–Barr virus nuclear antigen 2 (EBNA2) identify potential cellular proteins targeted in viral transformation. Journal of General Virology, 2017, 98, 2128-2142.	2.9	8
47	Epstein-Barr Virus EBER Transcripts Affect miRNA-Mediated Regulation of Specific Targets and Are Processed to Small RNA Species. Non-coding RNA, 2015, 1, 170-191.	2.6	7
48	MiR-148a impairs Ras/ERK signaling in B lymphocytes by targeting SOS proteins. Oncotarget, 2017, 8, 56417-56427.	1.8	6
49	The LARK/RBM4a protein is highly expressed in cerebellum as compared to cerebrum. Neuroscience Letters, 2008, 444, 11-15.	2.1	5
50	Lysine residues of Epstein–Barr virus-encoded nuclear antigen 2 do not confer secondary modifications via ubiquitin or SUMO-like proteins but modulate transcriptional activation. Journal of General Virology, 2002, 83, 1037-1042.	2.9	5
51	Analysis of Argonaute Complex Bound mRNAs in DU145 Prostate Carcinoma Cells Reveals New miRNA Target Genes. Prostate Cancer, 2017, 2017, 1-12.	0.6	3