Mark E Brigham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mercury Cycling in Stream Ecosystems. 1. Water Column Chemistry and Transport. Environmental Science & Technology, 2009, 43, 2720-2725.	10.0	216
2	Mercury in Soils, Lakes, and Fish in Voyageurs National Park (Minnesota):Â Importance of Atmospheric Deposition and Ecosystem Factors. Environmental Science & Technology, 2006, 40, 6261-6268.	10.0	180
3	Mercury Cycling in Stream Ecosystems. 2. Benthic Methylmercury Production and Bed Sedimentâ^'Pore Water Partitioning. Environmental Science & Technology, 2009, 43, 2726-2732.	10.0	130
4	Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 244-252.	1.4	115
5	Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Science of the Total Environment, 2016, 568, 546-556.	8.0	105
6	Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS ONE, 2017, 12, e0182868.	2.5	87
7	Atmospheric Mercury Deposition to Lakes and Watersheds. Advances in Chemistry Series, 1994, , 33-66.	0.6	50
8	Mercury trends in fish from rivers and lakes in the United States, 1969–2005. Environmental Monitoring and Assessment, 2011, 175, 175-191.	2.7	50
9	Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States. Ecotoxicology, 2011, 20, 1530-1542.	2.4	47
10	Spatial and Seasonal Variability of Dissolved Methylmercury in Two Stream Basins in the Eastern United States. Environmental Science & Technology, 2011, 45, 2048-2055.	10.0	36
11	Methylmercury in Flood-Control Impoundments and Natural Waters of Northwestern Minnesota, 1997–99. Water, Air, and Soil Pollution, 2002, 138, 61-78.	2.4	34
12	Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes. Integrated Environmental Assessment and Management, 2018, 14, 509-518.	2.9	34
13	In situvinylindole synthesis. Diels-alder reactions with maleimides to give tetrahydrocarbazoles. Journal of Heterocyclic Chemistry, 1993, 30, 81-91.	2.6	32
14	Optimizing fish sampling for fish–mercury bioaccumulation factors. Chemosphere, 2015, 135, 467-473.	8.2	26
15	Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure. PLoS ONE, 2017, 12, e0184725.	2.5	26
16	Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA. Ecotoxicology, 2013, 22, 60-71.	2.4	23
17	Shallow Groundwater Mercury Supply in a Coastal Plain Stream. Environmental Science & Technology, 2012, 46, 7503-7511.	10.0	19
18	Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors. Environmental Science & Technology, 2013, 47, 5904-5912.	10.0	16

Mark E Brigham

#	Article	IF	CITATIONS
19	Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates. Environmental Pollution, 2013, 172, 42-52.	7.5	14
20	Lacustrine Responses to Decreasing Wet Mercury Deposition Rates—Results from a Case Study in Northern Minnesota. Environmental Science & Technology, 2014, 48, 6115-6123.	10.0	14
21	Methylmercury—total mercury ratios in predator and primary consumer insects from Adirondack streams (New York, USA). Ecotoxicology, 2020, 29, 1644-1658.	2.4	13
22	Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis. Environmental Pollution, 2014, 187, 182-192.	7.5	9
23	Long-Term Trends in Regional Wet Mercury Deposition and Lacustrine Mercury Concentrations in Four Lakes in Voyageurs National Park. Applied Sciences (Switzerland), 2021, 11, 1879.	2.5	8