List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11549673/publications.pdf Version: 2024-02-01

Οι CA ΚΑΖΑΚΟΝΑ

#	Article	IF	CITATIONS
1	A Rapid Graphene Sensor Platform for the Detection of Viral Proteins in Low Volume Samples. Advanced NanoBiomed Research, 2022, 2, .	3.6	2
2	Thermoelectric Signature of Individual Skyrmions. Physical Review Letters, 2021, 126, 077202.	7.8	18
3	Strongly Absorbing Nanoscale Infrared Domains within Strained Bubbles at hBN–Graphene Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 57638-57648.	8.0	7
4	Contactless probing of graphene charge density variation in a controlled humidity environment. Carbon, 2020, 163, 408-416.	10.3	1
5	Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials, 2020, 7, 032002.	4.4	103
6	Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Scientific Reports, 2020, 10, 3223.	3.3	10
7	Comparison and Validation of Different Magnetic Force Microscopy Calibration Schemes. Small, 2020, 16, e1906144.	10.0	15
8	Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy. Journal of Magnetism and Magnetic Materials, 2020, 511, 166947.	2.3	13
9	European Research on Magnetic Nanoparticles for Biomedical Applications: Standardisation Aspects. Advances in Intelligent Systems and Computing, 2020, , 316-326.	0.6	5
10	Nanoscale mapping of quasiparticle band alignment. Nature Communications, 2019, 10, 3283.	12.8	20
11	Magnetic imaging using geometrically constrained nano-domain walls. Nanoscale, 2019, 11, 4478-4488.	5.6	14
12	Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method. Scientific Reports, 2019, 9, 3880.	3.3	16
13	Qualitative analysis of scanning gate microscopy on epitaxial graphene. 2D Materials, 2019, 6, 025023.	4.4	4
14	Individual skyrmion manipulation by local magnetic field gradients. Communications Physics, 2019, 2, .	5.3	74
15	Probing exciton species in atomically thin WS ₂ –graphene heterostructures. JPhys Materials, 2019, 2, 025001.	4.2	5
16	Probing the nanoscale origin of strain and doping in graphene-hBN heterostructures. 2D Materials, 2019, 6, 015022.	4.4	17
17	Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field. Applied Physics Letters, 2018, 112, .	3.3	68
18	Imaging Bulk and Edge Transport near the Dirac Point in Graphene Moiré Superlattices. Nano Letters, 2018, 18, 2530-2537.	9.1	11

#	Article	IF	CITATIONS
19	Confocal laser scanning microscopy for rapid optical characterization of graphene. Communications Physics, 2018, 1, .	5.3	36
20	Surface-Mediated Aligned Growth of Monolayer MoS ₂ and In-Plane Heterostructures with Graphene on Sapphire. ACS Nano, 2018, 12, 10032-10044.	14.6	64
21	Detection of Ultralow Concentration NO ₂ in Complex Environment Using Epitaxial Graphene Sensors. ACS Sensors, 2018, 3, 1666-1674.	7.8	45
22	Electrical Homogeneity Mapping of Epitaxial Graphene on Silicon Carbide. ACS Applied Materials & Interfaces, 2018, 10, 31641-31647.	8.0	20
23	Switchable bi-stable multilayer magnetic probes for imaging of soft magnetic structures. Ultramicroscopy, 2017, 179, 41-46.	1.9	9
24	Role of substrate on interaction of water molecules with graphene oxide and reduced graphene oxide. Carbon, 2017, 122, 168-175.	10.3	16
25	Standardisation of magnetic nanoparticles in liquid suspension. Journal Physics D: Applied Physics, 2017, 50, 383003.	2.8	56
26	Calibration of multi-layered probes with low/high magnetic moments. Scientific Reports, 2017, 7, 7224.	3.3	17
27	Excitonic Effects in Tungsten Disulfide Monolayers on Two-Layer Graphene. ACS Nano, 2016, 10, 7840-7846.	14.6	39
28	Atmospheric doping effects in epitaxial graphene: correlation of local and global electrical studies. 2D Materials, 2016, 3, 015006.	4.4	43
29	Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides. ACS Nano, 2016, 10, 3233-3240.	14.6	70
30	Effects of humidity on the electronic properties of graphene prepared by chemical vapour deposition. Carbon, 2016, 103, 273-280.	10.3	53
31	Low contact resistance in epitaxial graphene devices for quantum metrology. AIP Advances, 2015, 5, .	1.3	19
32	Phase diagram of magnetic states in nickel submicron disks. Journal of Applied Physics, 2015, 118, .	2.5	10
33	Water Affinity to Epitaxial Graphene: The Impact of Layer Thickness. Advanced Materials Interfaces, 2015, 2, 1500252.	3.7	28
34	Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project. International Journal of Molecular Sciences, 2015, 16, 20308-20325.	4.1	59
35	Carrier type inversion in quasi-free standing graphene: studies of local electronic and structural properties. Scientific Reports, 2015, 5, 10505.	3.3	47
36	Electrostatic transparency of graphene oxide sheets. Carbon, 2015, 86, 188-196.	10.3	10

#	Article	IF	CITATIONS
37	Structural, optical and electrostatic properties of single and few-layers MoS ₂ : effect of substrate. 2D Materials, 2015, 2, 015005.	4.4	80
38	Thickness-Dependent Hydrophobicity of Epitaxial Graphene. ACS Nano, 2015, 9, 8401-8411.	14.6	121
39	Influence of Geometry on Domain Wall Dynamics in Permalloy Nanodevices. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
40	Local electric field screening in bi-layer graphene devices. Frontiers in Physics, 2014, 2, .	2.1	20
41	Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	13
42	Exploring graphene formation on the C-terminated face of SiC by structural, chemical and electrical methods. Carbon, 2014, 69, 221-229.	10.3	21
43	Modeling of Anisotropic Magnetoresistance Properties of Permalloy Nanostructures. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	17
44	Anisotropic Magnetoresistance State Space of Permalloy Nanowires with Domain Wall Pinning Geometry. Scientific Reports, 2014, 4, 6045.	3.3	32
45	Visualisation of edge effects in side-gated graphene nanodevices. Scientific Reports, 2014, 4, 5881.	3.3	34
46	Magnetic Scanning Probe Calibration Using Graphene Hall Sensor. IEEE Transactions on Magnetics, 2013, 49, 3520-3523.	2.1	18
47	Express Optical Analysis of Epitaxial Graphene on SiC: Impact of Morphology on Quantum Transport. Nano Letters, 2013, 13, 4217-4223.	9.1	51
48	Epitaxial Graphene and Graphene–Based Devices Studied by Electrical Scanning Probe Microscopy. Crystals, 2013, 3, 191-233.	2.2	69
49	Epitaxial Graphene Sensors for Detection of Small Magnetic Moments. IEEE Transactions on Magnetics, 2013, 49, 97-100.	2.1	13
50	Standardization of surface potential measurements of graphene domains. Scientific Reports, 2013, 3, 2597.	3.3	198
51	Surface potential variations in epitaxial graphene devices investigated by Electrostatic Force Spectroscopy. , 2012, , .		7
52	Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements. Journal of Applied Physics, 2012, 112, 054308.	2.5	30
53	Mapping of Local Electrical Properties in Epitaxial Graphene Using Electrostatic Force Microscopy. Nano Letters, 2011, 11, 2324-2328.	9.1	82
54	Synthesis and Magnetic Characterization of Coaxial Ge _{1–<i>x</i>} Mn _{<i>x</i>} /a-Si Heterostructures. Crystal Growth and Design, 2011, 11, 5253-5259.	3.0	4

#	Article	IF	CITATIONS
55	Detection and susceptibility measurements of a single Dynal bead. Journal of Applied Physics, 2011, 110, .	2.5	25
56	Engineering and metrology of epitaxial graphene. Solid State Communications, 2011, 151, 1094-1099.	1.9	23
57	Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotechnology, 2010, 5, 186-189.	31.5	405
58	Single particle detection: Phase control in submicron Hall sensors. Journal of Applied Physics, 2010, 108, 103918.	2.5	13
59	Unusual magnetism in templated NiS nanoparticles. Journal of Physics Condensed Matter, 2010, 22, 076001.	1.8	13
60	Magnetic Properties of Single Crystalline Ge\$_{1 - {m x}}\$Mn\$_{m x}\$ Nanowires. IEEE Transactions on Magnetics, 2009, 45, 4085-4088.	2.1	6
61	Single Crystalline Ge1-xMnxNanowires as Building Blocks for Nanoelectronics. Nano Letters, 2009, 9, 50-56.	9.1	73
62	The route to single magnetic particle detection: a carbon nanotube decorated with a finite number of nanocubes. Nanotechnology, 2009, 20, 335301.	2.6	10
63	Microwave magnetoresistance in Ge:Mn nanowires and nanofilms. Science and Technology of Advanced Materials, 2008, 9, 024207.	6.1	6
64	Optimization of 2DEG InAs/GaSb Hall Sensors for Single Particle Detection. IEEE Transactions on Magnetics, 2008, 44, 4480-4483.	2.1	58
65	SUPERCRITICAL FLUID PROCESSING OF FUNCTIONAL OXIDE CORE-SHELL NANOCABLE ARRAYS. Integrated Ferroelectrics, 2007, 92, 77-86.	0.7	0
66	Scanned micro-Hall microscope for detection of biofunctionalized magnetic beads. Applied Physics Letters, 2007, 90, 162502.	3.3	9
67	Engineering the magnetic properties of Ge1â^'xMnx nanowires. Journal of Applied Physics, 2007, 101, 09H108.	2.5	17
68	Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica. Journal of Solid State Chemistry, 2007, 180, 3443-3449.	2.9	9
69	Tunable magnetic properties of metal/metal oxide nanoscale coaxial cables. Physical Review B, 2006, 74,	3.2	24
70	Synthesis and Characterization of Highly Ordered Cobalt–Magnetite Nanocable Arrays. Small, 2006, 2, 1299-1307.	10.0	38
71	Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays. Journal of Magnetism and Magnetic Materials, 2005, 286, 171-176.	2.3	19
72	Room-temperature ferromagnetism inGe1â^'xMnxnanowires. Physical Review B, 2005, 72, .	3.2	71

#	Article	IF	CITATIONS
73	Probing the magnetic properties of cobalt–germanium nanocable arrays. Journal of Materials Chemistry, 2005, 15, 2408.	6.7	28
74	Structural and Magnetic Characterization of Ge0.99Mn0.01 Nanowire Arrays. Chemistry of Materials, 2005, 17, 3615-3619.	6.7	41
75	Carbon Nanotube Bolometer: Transport Properties and Noise Characteristics. Solid State Phenomena, 0, 190, 510-513.	0.3	1
76	Probing Nanoscale Schottky Barrier Characteristics at WSe ₂ /Graphene Heterostructures via Electrostatic Doping. Advanced Electronic Materials, 0, , 2200196.	5.1	3