
Diane C Bassham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 702 Td (edition 1,430)

3	Autophagy: Pathways for Self-Eating in Plant Cells. Annual Review of Plant Biology, 2012, 63, 215-237.	18.7	459
4	Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis. Plant Physiology, 2007, 143, 291-299.	4.8	409
5	AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant Journal, 2005, 42, 535-546.	5.7	336
6	Autophagy in Development and Stress Responses of Plants. Autophagy, 2006, 2, 2-11.	9.1	327
7	Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 2009, 5, 954-963.	9.1	327
8	Selective Autophagy of BES1 Mediated by DSK2 Balances Plant Growth and Survival. Developmental Cell, 2017, 41, 33-46.e7.	7.0	262
9	Plant autophagy—more than a starvation response. Current Opinion in Plant Biology, 2007, 10, 587-593.	7.1	246
10	Degradation of the Endoplasmic Reticulum by Autophagy during Endoplasmic Reticulum Stress in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4635-4651.	6.6	246
11	Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant Journal, 2005, 42, 598-608.	5.7	240
12	TOR Is a Negative Regulator of Autophagy in Arabidopsis thaliana. PLoS ONE, 2010, 5, e11883.	2.5	233
13	Transcriptome Profiling of the Response of Arabidopsis Suspension Culture Cells to Suc Starvation. Plant Physiology, 2004, 135, 2330-2347.	4.8	226
14	Linking Autophagy to Abiotic and Biotic Stress Responses. Trends in Plant Science, 2019, 24, 413-430.	8.8	203
15	Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant Journal, 2011, 66, 818-830.	5.7	190
16	SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0182591.	2.5	149
17	RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1093-1098.	7.1	148
18	TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1204.	3.6	148

DIANE C BASSHAM

#	Article	IF	CITATIONS
19	Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant Journal, 2016, 85, 83-95.	5.7	131
20	New advances in autophagy in plants: Regulation, selectivity and function. Seminars in Cell and Developmental Biology, 2018, 80, 113-122.	5.0	97
21	Dynamics of Autophagosome Formation. Plant Physiology, 2018, 176, 219-229.	4.8	95
22	Evidence for autophagy-dependent pathways of rRNA turnover in <i>Arabidopsis</i> . Autophagy, 2015, 11, 2199-2212.	9.1	92
23	SNAREs: Cogs and Coordinators in Signaling and Development. Plant Physiology, 2008, 147, 1504-1515.	4.8	90
24	Function and regulation of macroautophagy in plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1397-1403.	4.1	83
25	Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants, 2020, 9, 621.	5.1	83
26	ldentification of transcription factors that regulate <i>ATC8</i> expression and autophagy in <i>Arabidopsis</i> . Autophagy, 2020, 16, 123-139.	9.1	81
27	What to Eat: Evidence for Selective Autophagy in Plants ^F . Journal of Integrative Plant Biology, 2012, 54, 907-920.	8.5	78
28	New Insight into the Mechanism and Function of Autophagy in Plant Cells. International Review of Cell and Molecular Biology, 2015, 320, 1-40.	3.2	76
29	The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize. Plant Cell, 2020, 32, 3559-3575.	6.6	75
30	COST1 regulates autophagy to control plant drought tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7482-7493.	7.1	71
31	Response to Persistent ER Stress in Plants: A Multiphasic Process That Transitions Cells from Prosurvival Activities to Cell Death. Plant Cell, 2018, 30, 1220-1242.	6.6	67
32	IRE1B degrades RNAs encoding proteins that interfere with the induction of autophagy by ER stress in <i>Arabidopsis thaliana</i> . Autophagy, 2018, 14, 1562-1573.	9.1	66
33	Methods for analysis of autophagy in plants. Methods, 2015, 75, 181-188.	3.8	57
34	Combating stress: the interplay between hormone signaling and autophagy in plants. Journal of Experimental Botany, 2020, 71, 1723-1733.	4.8	53
35	Root growth movements: Waving and skewing. Plant Science, 2014, 221-222, 42-47.	3.6	50
36	Persulfidation of ATG18a regulates autophagy under ER stress in <i>Arabidopsis</i> . Proceedings of the United States of America, 2021, 118, .	7.1	50

DIANE C BASSHAM

#	Article	IF	CITATIONS
37	Autophagy in crop plants: what's new beyond <i>Arabidopsis</i> ?. Open Biology, 2018, 8, .	3.6	49
38	Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. Planta, 2017, 245, 779-792.	3.2	38
39	A Functional Unfolded Protein Response Is Required for Normal Vegetative Development. Plant Physiology, 2019, 179, 1834-1843.	4.8	37
40	Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator. International Journal of Molecular Sciences, 2020, 21, 8259.	4.1	31
41	Links between ER stress and autophagy in plants. Plant Signaling and Behavior, 2013, 8, e24297.	2.4	29
42	Germination and proteome analyses reveal intraspecific variation in seed dormancy regulation in common waterhemp (Amaranthus tuberculatus). Weed Science, 2006, 54, 305-315.	1.5	28
43	Autophagy during drought: function, regulation, and potential application. Plant Journal, 2022, 109, 390-401.	5.7	28
44	Î ³ -Aminobutyric acid plays a key role in plant acclimation to a combination of high light and heat stress. Plant Physiology, 2022, 188, 2026-2038.	4.8	28
45	The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. Plant Cell, 2021, 33, 3532-3554.	6.6	27
46	Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots. Scientific Reports, 2015, 5, 15694.	3.3	26
47	Degradation of cytosolic ribosomes by autophagy-related pathways. Plant Science, 2017, 262, 169-174.	3.6	25
48	Regulation of autophagy through SnRK1 and TOR signaling pathways. Plant Signaling and Behavior, 2017, 12, e1395128.	2.4	25
49	Degradation of the endoplasmic reticulum by autophagy in plants. Autophagy, 2013, 9, 622-623.	9.1	23
50	Cell growth and homeostasis are disrupted in arabidopsis rns2-2 mutants missing the main vacuolar RNase activity. Annals of Botany, 2017, 120, 911-922.	2.9	23
51	The Ins and Outs of Autophagic Ribosome Turnover. Cells, 2019, 8, 1603.	4.1	23
52	TOR mediates the autophagy response to altered nucleotide homeostasis in an RNase mutant. Journal of Experimental Botany, 2020, 71, 6907-6920.	4.8	21
53	Autophagy in plants and algae. Frontiers in Plant Science, 2014, 5, 679.	3.6	20
54	Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 2594-2614.	6.6	18

DIANE C BASSHAM

#	Article	IF	CITATIONS
55	Daily temperature cycles promote alternative splicing of RNAs encoding SR45a, a splicing regulator in maize. Plant Physiology, 2021, 186, 1318-1335.	4.8	16
56	ER-Phagy and Its Role in ER Homeostasis in Plants. Plants, 2020, 9, 1771.	3.5	15
57	Detection of Autophagy in Plants by Fluorescence Microscopy. Methods in Molecular Biology, 2016, 1450, 161-172.	0.9	14
58	COST1 balances plant growth and stress tolerance via attenuation of autophagy. Autophagy, 2020, 16, 1157-1158.	9.1	12
59	TNO1, a TGN-localized SNARE-interacting protein, modulates root skewing in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 73.	3.6	10
60	Overexpression of <i>trans</i> â€Golgi network tâ€ <scp>SNARE</scp> s rescues vacuolar trafficking and <scp>TGN</scp> morphology defects in a putative tethering factor mutant. Plant Journal, 2019, 99, 703-716.	5.7	10
61	Post-Synthetic Reduction of Pectin Methylesterification Causes Morphological Abnormalities and Alterations to Stress Response in Arabidopsis thaliana. Plants, 2020, 9, 1558.	3.5	10
62	Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Letters, 2022, 596, 2198-2214.	2.8	9
63	Editorial: Sugars and Autophagy in Plants. Frontiers in Plant Science, 2019, 10, 1190.	3.6	8
64	Complex Changes in Membrane Lipids Associated with the Modification of Autophagy in Arabidopsis. Metabolites, 2022, 12, 190.	2.9	7
65	Inheritance of deep seed dormancy and stratification-mediated dormancy alleviation in Amaranthus tuberculatus. Seed Science Research, 2006, 16, 193-202.	1.7	4
66	Gravitropism and Lateral Root Emergence are Dependent on the Trans-Golgi Network Protein TNO1. Frontiers in Plant Science, 2015, 6, 969.	3.6	4
67	Pigments on the move. Nature, 2015, 526, 644-645.	27.8	4
68	Spheres of autophagy in maize. Nature Plants, 2018, 4, 985-986.	9.3	2
69	Using Arabidopsis Mesophyll Protoplasts to Study Unfolded Protein Response Signaling. Bio-protocol, 2018, 8, e3101.	0.4	2
70	An unexpected function for an ESCRT protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	1