
J Scott Bunch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11545058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voltage gated inter-cation selective ion channels from graphene nanopores. Nanoscale, 2019, 11, 9856-9861.	2.8	37
2	Monolayer MoS ₂ Strained to 1.3% With a Microelectromechanical System. Journal of Microelectromechanical Systems, 2019, 28, 254-263.	1.7	45
3	Transient thermal characterization of suspended monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS </mml:mi> <mml:mn>2 Physical Review Materials, 2018, 2, .</mml:mn></mml:msub></mml:math 	ո ։։։։ /mi	ml:msub>
4	A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters, 2017, 13, 42-77.	2.0	920
5	Adhesion, Stiffness, and Instability in Atomically Thin MoS ₂ Bubbles. Nano Letters, 2017, 17, 5329-5334.	4.5	92
6	Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS ₂ . Nano Letters, 2016, 16, 5836-5841.	4.5	443
7	Analysis of Time-Varying, Stochastic Gas Transport through Graphene Membranes. ACS Nano, 2016, 10, 786-795.	7.3	27
8	Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nature Nanotechnology, 2015, 10, 785-790.	15.6	122
9	Large Arrays and Properties of 3â€Terminal Graphene Nanoelectromechanical Switches. Advanced Materials, 2014, 26, 1571-1576.	11.1	55
10	Graphene Blisters with Switchable Shapes Controlled by Pressure and Adhesion. Nano Letters, 2013, 13, 6216-6221.	4.5	70
11	Observation of Pull-In Instability in Graphene Membranes under Interfacial Forces. Nano Letters, 2013, 13, 2309-2313.	4.5	40
12	Mechanics of Adhered, Pressurized Graphene Blisters. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	87
13	Ultrathin Oxide Films by Atomic Layer Deposition on Graphene. Nano Letters, 2012, 12, 3706-3710.	4.5	74
14	Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7, 728-732.	15.6	998
15	Putting a damper on nanoresonators. Nature Nanotechnology, 2011, 6, 331-332.	15.6	8
16	Ultrastrong adhesion of graphene membranes. Nature Nanotechnology, 2011, 6, 543-546.	15.6	904
17	Impermeable Atomic Membranes from Graphene Sheets. Nano Letters, 2008, 8, 2458-2462.	4.5	2,537
18	An all-optical actuation and detection scheme for studying dissipation and materials properties of NEMS resonators. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0

#	Article	IF	CITATIONS
19	Electromechanical Resonators from Graphene Sheets. Science, 2007, 315, 490-493.	6.0	2,604
20	Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots. Nano Letters, 2005, 5, 287-290.	4.5	301