Martin A Giese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11541911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shape-invariant encoding of dynamic primate facial expressions in human perception. ELife, 2021, 10, .	6.0	1
2	Representation of the observer's predicted outcome value in mirror and nonmirror neurons of macaque F5 ventral premotor cortex. Journal of Neurophysiology, 2020, 124, 941-961.	1.8	3
3	A Naturalistic Dynamic Monkey Head Avatar Elicits Species-Typical Reactions and Overcomes the Uncanny Valley. ENeuro, 2020, 7, ENEURO.0524-19.2020.	1.9	9
4	Physiologically-Inspired Neural Circuits for the Recognition of Dynamic Faces. Lecture Notes in Computer Science, 2020, , 168-179.	1.3	1
5	Lighting-from-above prior in biological motion perception. Scientific Reports, 2018, 8, 1507.	3.3	0
6	Low-dimensional organization of angular momentum during walking on a narrow beam. Scientific Reports, 2018, 8, 95.	3.3	18
7	Adaptation aftereffects reveal representations for encoding of contingent social actions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7515-7520.	7.1	15
8	Neural Model for the Visual Recognition of Animacy and Social Interaction. Lecture Notes in Computer Science, 2018, , 168-177.	1.3	2
9	Adaptive synthesis of dynamically feasible full-body movements for the humanoid robot HRP-2 by flexible combination of learned dynamic movement primitives. Robotics and Autonomous Systems, 2017, 91, 270-283.	5.1	22
10	Modeling of Coordinated Human Body Motion by Learning of Structured Dynamic Representations. Springer Tracts in Advanced Robotics, 2017, , 237-267.	0.4	2
11	Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: A rater-blinded, intra-individually controlled trial. Parkinsonism and Related Disorders, 2017, 39, 80-84.	2.2	45
12	Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports, 2017, 7, 13191.	3.3	3
13	Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. ELife, 2017, 6, .	6.0	51
14	Motor expertise facilitates the accuracy of state extrapolation in perception. PLoS ONE, 2017, 12, e0187666.	2,5	4
15	Validation of enhanced kinect sensor based motion capturing for gait assessment. PLoS ONE, 2017, 12, e0175813.	2.5	109
16	The Default Mode Network Differentiates Biological From Non-Biological Motion. Cerebral Cortex, 2016, 26, 234-245.	2.9	16
17	Perceptual Robotics. , 2016, , 2095-2114.		3
18	Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia. Human Brain Mapping, 2016, 37, 4472-4486.	3.6	39

#	Article	IF	CITATIONS
19	Face Recognition: Canonical Mechanisms at Multiple Timescales. Current Biology, 2016, 26, R534-R537.	3.9	3
20	Mirror Neurons in Monkey Premotor Area F5 Show Tuning for Critical Features of Visual Causality Perception. Current Biology, 2016, 26, 3077-3082.	3.9	32
21	Bayesian Approaches for Learning of Primitive-Based Compact Representations of Complex Human Activities. Springer Tracts in Advanced Robotics, 2016, , 117-137.	0.4	3
22	Phenomenological Model for the Adapatation of Shape-Selective Neurons in Area IT. Lecture Notes in Computer Science, 2016, , 222-229.	1.3	0
23	Neural model of biological motion recognition based on shading cues. BMC Neuroscience, 2015, 16, .	1.9	0
24	Common neural correlates of emotion perception in humans. Human Brain Mapping, 2015, 36, 4184-4201.	3.6	35
25	Brain activity correlates with emotional perception induced by dynamic avatars. NeuroImage, 2015, 122, 306-317.	4.2	27
26	Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations. Neuron, 2015, 88, 167-180.	8.1	62
27	Learning Representations of Animated Motion Sequences—A Neural Model. Topics in Cognitive Science, 2014, 6, 170-182.	1.9	18
28	An Intact Action-Perception Coupling Depends on the Integrity of the Cerebellum. Journal of Neuroscience, 2014, 34, 6707-6716.	3.6	43
29	Mirror representations innate versus determined by experience: A viewpoint from learning theory. Behavioral and Brain Sciences, 2014, 37, 201-202.	0.7	0
30	Show me how you walk and I tell you how you feel — A functional near-infrared spectroscopy study on emotion perception based on human gait. NeuroImage, 2014, 85, 380-390.	4.2	47
31	Neurodynamical model for visual action recognition. BMC Neuroscience, 2014, 15, .	1.9	0
32	Coupling Gaussian Process Dynamical Models with Product-of-Experts Kernels. Lecture Notes in Computer Science, 2014, , 603-610.	1.3	5
33	Expression of emotion in the kinematics of locomotion. Experimental Brain Research, 2013, 225, 159-176.	1.5	75
34	A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D: Nonlinear Phenomena, 2013, 263, 41-56.	2.8	42
35	Dynamically stable control of articulated crowds. Journal of Computational Science, 2013, 4, 304-310.	2.9	10
36	Physiologically Inspired Model for the Visual Recognition of Transitive Hand Actions. Journal of Neuroscience, 2013, 33, 6563-6580.	3.6	75

#	Article	IF	CITATIONS
37	Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. Journal of Neurophysiology, 2013, 110, 2337-2349.	1.8	38
38	Kinematics of the Coordination of Pointing during Locomotion. PLoS ONE, 2013, 8, e79555.	2.5	25
39	Segmenting sign language into motor primitives with Bayesian binning. Frontiers in Computational Neuroscience, 2013, 7, 68.	2.1	10
40	Model selection for the extraction of movement primitives. Frontiers in Computational Neuroscience, 2013, 7, 185.	2.1	19
41	Video game–based coordinative training improves ataxia in children with degenerative ataxia. Neurology, 2012, 79, 2056-2060.	1.1	155
42	Mirror neurons encode the subjective value of an observed action. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11848-11853.	7.1	114
43	Neural theory for the perception of causal actions. Psychological Research, 2012, 76, 476-493.	1.7	18
44	Learning Representations for Animated Motion Sequence and Implied Motion Recognition. Lecture Notes in Computer Science, 2012, , 288-295.	1.3	4
45	View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex. Current Biology, 2011, 21, 144-148.	3.9	205
46	Spatiotemporal Tuning of the Facilitation of Biological Motion Perception by Concurrent Motor Execution. Journal of Neuroscience, 2011, 31, 3493-3499.	3.6	47
47	Longâ€ŧerm effects of coordinative training in degenerative cerebellar disease. Movement Disorders, 2010, 25, 2239-2246.	3.9	148
48	Perceptual and computational analysis of critical features for biological motion. Journal of Vision, 2010, 10, 15-15.	0.3	41
49	Neuronal Encoding of Human Kinematic Invariants during Action Observation. Cerebral Cortex, 2010, 20, 1647-1655.	2.9	82
50	Visual Learning Shapes the Processing of Complex Movement Stimuli in the Human Brain. Journal of Neuroscience, 2009, 29, 14026-14038.	3.6	42
51	Critical features for the perception of emotion from gait. Journal of Vision, 2009, 9, 15-15.	0.3	269
52	An analytical formulation of the law of intersegmental coordination during human locomotion. Experimental Brain Research, 2009, 193, 371-385.	1.5	59
53	View-independent recognition of grasping actions with a cortex-inspired model. , 2009, , .		1
54	Features in the Recognition of Emotions from Dynamic Bodily Expression. , 2009, , 313-340.		6

#	Article	IF	CITATIONS
55	Real-Time Synthesis of Body Movements Based on Learned Primitives. Lecture Notes in Computer Science, 2009, , 107-127.	1.3	16
56	Bio-inspired Approach for the Recognition of Goal-Directed Hand Actions. Lecture Notes in Computer Science, 2009, , 714-722.	1.3	4
57	Simulating mirror-neuron responses using a neural model for visual action recognition. BMC Neuroscience, 2008, 9, .	1.9	0
58	Lateral asymmetry of bodily emotion expression. Current Biology, 2008, 18, R329-R330.	3.9	34
59	Probing dynamic human facial action recognition from the other side of the mean. , 2008, , .		1
60	Metrics of the perception of body movement. Journal of Vision, 2008, 8, 13-13.	0.3	25
61	Perceptual Robotics. , 2008, , 1481-1498.		4
62	Neural Model for the Visual Recognition of Goal-Directed Movements. Lecture Notes in Computer Science, 2008, , 939-948.	1.3	3
63	Neural representations of kinematic laws of motion: Evidence for action-perception coupling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20582-20587.	7.1	134
64	Specific influences of cerebellar dysfunctions on gait. Brain, 2007, 130, 786-798.	7.6	168
65	Learning-based methods for the analysis of intralimb-coordination and adaptation of locomotor patterns in cerebellar patients. , 2007, , .		1
66	Extraction of spatio-temporal primitives of emotional body expressions. Neurocomputing, 2007, 70, 1938-1942.	5.9	38
67	Learning to discriminate complex movements: Biological versus artificial trajectories. Journal of Vision, 2006, 6, 3.	0.3	76
68	Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature, 2006, 442, 572-575.	27.8	366
69	Nonvisual Motor Training Influences Biological Motion Perception. Current Biology, 2006, 16, 69-74.	3.9	360
70	Critical features for the recognition of biological motion. Journal of Vision, 2005, 5, 6.	0.3	124
71	ON THE REPRESENTATION, LEARNING AND TRANSFER OF SPATIO-TEMPORAL MOVEMENT CHARACTERISTICS. International Journal of Humanoid Robotics, 2004, 01, 613-636.	1.1	39
72	A Neural Model for Biological Movement Recognition: A Neurophysiologically Plausible Theory. , 2004, , 443-470.		8

#	Article	IF	CITATIONS
73	Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 2003, 4, 179-192.	10.2	849
74	Nonlinear dynamics of direction-selective recurrent neural media. Physical Review E, 2002, 65, 051904.	2.1	24
75	Biophysiologically Plausible Implementations of the Maximum Operation. Neural Computation, 2002, 14, 2857-2881.	2.2	79
76	Automatic Synthesis of Sequences of Human Movements by Linear Combination of Learned Example Patterns. Lecture Notes in Computer Science, 2002, , 538-547.	1.3	5
77	Morphable Models for the Analysis and Synthesis of Complex Motion Patterns. International Journal of Computer Vision, 2000, 38, 59-73.	15.6	117