
A A Allerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11540831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices. ECS Journal of Solid State Science and Technology, 2017, 6, Q3061-Q3066.	1.8	104
2	Reduction in the Number of Mg Acceptors with Al Concentration in Al x Ga1â^'x N. Journal of Electronic Materials, 2015, 44, 4139-4143.	2.2	1
3	The Mg impurity in nitride alloys. , 2014, , .		0
4	The influence of Al composition on point defect incorporation in AlGaN. Applied Physics Letters, 2012, 100, 043509.	3.3	38
5	Strain relaxation in AlGaN multilayer structures by inclined dislocations. Journal of Applied Physics, 2009, 105, .	2.5	133
6	Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods. Applied Physics Letters, 2005, 86, 031907.	3.3	182
7	Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers. Applied Physics Letters, 2005, 86, 241904.	3.3	250
8	Relaxation of compressively-strained AlGaN by inclined threading dislocations. Applied Physics Letters, 2005, 87, 121112.	3.3	63
9	Characterization of Minority-Carrier Hole Transport in Nitride-Based Light-Emitting Diodes with Optical and Electrical Time-Resolved Techniques. Materials Research Society Symposia Proceedings, 2004, 831, 108.	0.1	Ο
10	Junction Temperature Measurements in Deep-UV Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2004, 831, 299.	0.1	2
11	Advances in AlGaN-based Deep UV LEDs. Materials Research Society Symposia Proceedings, 2004, 831, 67.	0.1	2
12	Room-temperature direct current operation of 290 nm light-emitting diodes with milliwatt power levels. Applied Physics Letters, 2004, 84, 3394-3396.	3.3	155
13	In situ measurements of GaN nucleation layer decompostion. Applied Physics Letters, 2003, 82, 1170-1172.	3.3	40
14	Hydrogen configurations, formation energies, and migration barriers in GaN. Journal of Applied Physics, 2003, 94, 2311-2318.	2.5	46
15	Deep-level defects in InGaAsN grown by molecular-beam epitaxy. Applied Physics Letters, 2002, 80, 4777-4779.	3.3	39
16	Cantilever Epitaxy of GaN on Sapphire: Further Reductions in Dislocation Density. Materials Research Society Symposia Proceedings, 2002, 743, L1.8.1.	0.1	1
17	Characterization of Dark-Block Defects in Cantilever Epitaxial GaN on Sapphire. Materials Research Society Symposia Proceedings, 2002, 743, L3.15.1.	0.1	0
18	Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence. Applied Physics Letters, 2002, 81, 1940-1942.	3.3	126

A A Allerman

#	Article	IF	CITATIONS
19	Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy. Applied Physics Letters, 2002, 80, 1379-1381.	3.3	89
20	Minimizing threading dislocations by redirection during cantilever epitaxial growth of GaN. Applied Physics Letters, 2002, 81, 2758-2760.	3.3	44
21	Comparison of deep level spectra of MBE- and MOCVD-grown InGaAsN. Materials Research Society Symposia Proceedings, 2002, 719, 1331.	0.1	Ο
22	The Role of Nitrogen-Induced Localization and Defects in InGaAsN (? 2% N): Comparison of InGaAsN Grown by Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	1
23	Deep levels and their impact on generation current in Sn-doped InGaAsN. Journal of Applied Physics, 2001, 90, 3405-3408.	2.5	40
24	Time-resolved photoluminescence studies of InxGa1â^'xAs1â^'yNy. Applied Physics Letters, 2000, 76, 188-190.	3.3	162
25	Minority carrier diffusion, defects, and localization in InGaAsN, with 2% nitrogen. Applied Physics Letters, 2000, 77, 400-402.	3.3	153
26	Photoluminescence-linewidth-derived reduced exciton mass forInyGa1â^'yAs1â^'xNxalloys. Physical Review B, 2000, 62, 7144-7149.	3.2	27
27	Laser gain and threshold properties in compressive-strained and lattice-matched GaInNAs/GaAs quantum wells. Applied Physics Letters, 1999, 75, 2891-2893.	3.3	67
28	InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs. Applied Physics Letters, 1999, 74, 729-731.	3.3	511
29	Deep levels in p-type InGaAsN lattice matched to GaAs. Applied Physics Letters, 1999, 74, 2830-2832.	3.3	83
30	Band structure ofInxGa1â^'xAs1â^'yNyalloys and effects of pressure. Physical Review B, 1999, 60, 4430-4433.	3.2	172
31	Time-Resolved Photoluminescence Studies of InxGa1â^xAs1â^'yNy. Materials Research Society Symposia Proceedings, 1999, 607, 153.	0.1	Ο
32	High slope efficiency, "cascaded―midinfrared lasers with type I InAsSb quantum wells. Applied Physics Letters, 1998, 72, 2093-2095.	3.3	29
33	Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions. Applied Physics Letters, 1997, 70, 3188-3190.	3.3	45
34	Recent Progress in the Growth of Mid-ir Emitters by Metalorganic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1997, 484, 19.	0.1	0
35	The growth of InAsSb/InAsP strained-layer superlattices for use in infrared emitters. Journal of Electronic Materials, 1997, 26, 1225-1230.	2.2	8
36	The metalorganic chemical vapor deposition growth of AlAsSb and InAsSb/InAs using novel source materials for Infrared Emitters. Journal of Electronic Materials, 1997, 26, 903-909.	2.2	15

A A Allerman

#	Article	IF	CITATIONS
37	InAsSbâ€based midâ€infrared lasers (3.8–3.9 μm) and lightâ€emitting diodes with AlAsSb claddings and semimetal electron injection, grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1996, 69, 465-467.	3.3	74
38	Novel Mid-Infrared Lasers with Compressively Strained InAsSb Active Regions. Materials Research Society Symposia Proceedings, 1996, 450, 23.	0.1	0
39	Preparation of AlAsSb and Mid-Infrared (3–5μm) Lasers By Metal-Organic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1996, 450, 43.	0.1	О