List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11540698/publications.pdf Version: 2024-02-01

FP DF KLOFT

#	Article	IF	CITATIONS
1	LOCALISATION OF 11β-HYDROXYSTEROID DEHYDROGENASE—TISSUE SPECIFIC PROTECTOR OF THE MINERALOCORTICOID RECEPTOR. Lancet, The, 1988, 332, 986-989.	13.7	960
2	Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 1987, 12, 83-105.	2.7	543
3	The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38, 1858-1873.	2.7	439
4	Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. Journal of Cell Science, 1996, 109, 787-792.	2.0	322
5	Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. The Journal of Steroid Biochemistry, 1986, 24, 269-272.	1.1	295
6	The postnatal development of the hypothalamic–pituitary–adrenal axis in the mouse. International Journal of Developmental Neuroscience, 2003, 21, 125-132.	1.6	223
7	Brain RNA and Hypophysectomy; A Topographical Study. Neuroendocrinology, 1972, 9, 285-296.	2.5	199
8	Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology, 2013, 38, 648-658.	2.7	197
9	Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, 2018, 49, 124-145.	5.2	175
10	Corticosteroids and the brain. Journal of Steroid Biochemistry and Molecular Biology, 1990, 37, 387-394.	2.5	155
11	Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. Journal of Neuroscience, 1991, 11, 2288-2294.	3.6	152
12	Decreased serotonin turnover in the dorsal hippocampus of rat brain shortly after adrenalectomy: selective normalization after corticosterone substitution. Brain Research, 1982, 239, 659-663.	2.2	150
13	Anxiolytic-like effects of selective mineralocorticoid and glucocorticoid antagonists on fear-enhanced behavior in the elevated plus-maze. Psychoneuroendocrinology, 1995, 20, 385-394.	2.7	145
14	Ontogeny of the Type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Developmental Brain Research, 1988, 42, 119-127.	1.7	143
15	Adrenal steroids and extinction behavior: Antagonism by progesterone, deoxycorticosterone and dexamethasone of a specific effect of corticosterone. Life Sciences, 1981, 28, 433-440.	4.3	137
16	Evidence for pituitary-brain transport of a behaviorally potent acth analog. Life Sciences, 1978, 22, 831-838.	4.3	136
17	Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain. Brain Research, 1987, 436, 120-128.	2.2	128
18	Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus. Journal of Cell Science, 1995, 108, 3003-3011.	2.0	116

#	Article	IF	CITATIONS
19	The effect of aging on stress responsiveness and central corticosteroid receptors in the Brown Norway rat. Neurobiology of Aging, 1992, 13, 159-170.	3.1	115
20	Aldosterone blocks the response to corticosterone in the raphe-hippocampal serotonin system. Brain Research, 1983, 264, 323-327.	2.2	110
21	Hippocampal kindling: corticosterone modulation of induced seizures. Brain Research, 1984, 309, 373-376.	2.2	104
22	Inhibitory avoidance deficit following short-term adrenalectomy in the rat: The role of adrenal catecholamines. Behavioral and Neural Biology, 1983, 39, 241-258.	2.2	97
23	Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel- and diencephalon. Developmental Brain Research, 1991, 61, 33-43.	1.7	92
24	Corticosterone decreases the efficacy of adrenaline to affect passive avoidance retention of adrenalectomized rats. Life Sciences, 1984, 34, 99-104.	4.3	72
25	Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Experimental Neurology, 2009, 216, 375-382.	4.1	68
26	Functional profile of the binary brain corticosteroid receptor system: Mediating, multitasking, coordinating, integrating. European Journal of Pharmacology, 2013, 719, 53-62.	3.5	65
27	Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine1A receptor expression in adrenally intact rats: implication for the pathogenesis of depression. Neuroscience, 1997, 80, 419-426.	2.3	60
28	Mineralocorticoid receptors in control of emotional arousal and fear memory. Hormones and Behavior, 2009, 56, 232-238.	2.1	57
29	Function and plasticity of brain corticosteroid receptor systems: Action of neuropeptides. The Journal of Steroid Biochemistry, 1986, 25, 723-731.	1.1	53
30	Stress or no stress: Mineralocorticoid receptors in the forebrain regulate behavioral adaptation. Neurobiology of Learning and Memory, 2012, 98, 33-40.	1.9	52
31	Oxytocin biotransformation in the rat limbic brain: Characterization of peptidase activities and significance in the formation of oxytocin fragments. Brain Research, 1980, 202, 401-414.	2.2	48
32	6.3 Co-localization of brain corticosteroid receptors in the rat hippocampus. Progress in Histochemistry and Cytochemistry, 1992, 26, 250-258.	5.1	43
33	Relative binding affinity of steroids for the corticosterone receptor system in rat hippocampus. The Journal of Steroid Biochemistry, 1984, 21, 173-178.	1.1	42
34	Brain corticosteroid receptor gene expression and neuroendocrine dynamics during aging. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 679-683.	2.5	39
35	Regulation of the developing hypothalamic–pituitary–adrenal axis in corticotropin releasing hormone receptor 1-deficient mice. Neuroscience, 2003, 119, 589-595.	2.3	36
36	Involvement of corticosterone in cardiovascular responses to an open-field novelty stressor in freely moving rats. Physiology and Behavior, 2002, 75, 207-215.	2.1	35

#	Article	IF	CITATIONS
37	Differential development of stress system (re)activity at weaning dependent on time of disruption of maternal care. Brain Research, 2008, 1217, 62-69.	2.2	35
38	Intracellular CBC-like molecules in the rat pituitary. The Journal of Steroid Biochemistry, 1984, 20, 367-371.	1,1	33
39	Arginine-vasopressin content of hippocampus and amygdala during passive avoidance behavior in rats. Brain Research, 1983, 280, 309-315.	2.2	32
40	Hippocampal corticosterone receptors and novelty-induced behavioral activity: Effect of kainic acid lesion in the hippocampus. Brain Research, 1983, 288, 219-228.	2.2	31
41	A molecular blueprint of gene expression in hippocampal subregions CA1, CA3, and DG is conserved in the brain of the common marmoset. Hippocampus, 2009, 19, 739-752.	1.9	29
42	Effects of maternal deprivation of CD1 mice on performance in the water maze and swim stress. Behavioural Brain Research, 2008, 187, 195-199.	2.2	28
43	Adrenal steroids as modulators of nerve cell function. The Journal of Steroid Biochemistry, 1984, 20, 175-181.	1.1	26
44	Ontogeny of the HPA axis of the CD1 mouse following 24 h maternal deprivation at pnd 3. International Journal of Developmental Neuroscience, 2010, 28, 217-224.	1.6	26
45	Behavioural actions of vasoactive intestinal peptide (VIP). Neuropeptides, 1984, 4, 331-341.	2.2	25
46	Glucocorticoids modulate the response of ornithine decarboxylase to unilateral removal of the dorsal hippocampus. Brain Research, 1983, 275, 91-98.	2.2	22
47	The hippocampal corticosterone receptor system of the homozygous diabetes insipidus (Brattleboro) rat. Neuroscience Letters, 1980, 16, 187-192.	2.1	21
48	ZK91587: A novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus. Life Sciences, 1988, 43, 1537-1543.	4.3	17
49	Corticosterone binding capacity increases in contralateral hippocampus after partial unilateral hippocampectomy. Neuroscience Letters, 1981, 21, 339-343.	2.1	16
50	Corticosteroid receptor plasticity and recovery of a deficient hippocampus-associated behavior after unilateral (dorsal) hippocampectomy. Brain Research, 1986, 374, 219-226.	2.2	12
51	Corticosteroid receptor analyses in rat and hamster brains reveal species specificity in the type I and type II receptors. The Journal of Steroid Biochemistry, 1988, 30, 417-420.	1.1	10
52	Lifetime achievement from a brain-adrenal perspective: On the CRF–urocortin–glucocorticoid balance. Journal of Chemical Neuroanatomy, 2013, 54, 42-49.	2.1	8
53	Neuropeptides, steroid hormones, stress and reproduction. Journal of Controlled Release, 1992, 21, 105-116.	9.9	4
54	Stress in the brain: implications for treatment of depression. Acta Neuropsychiatrica, 2002, 14, 155-166.	2.1	2

#	Article	IF	CITATIONS
55	Corticosteroid Receptor Balance Hypothesis. , 2016, , 21-31.		1
56	Brain Corticosteroid Receptor Function in Response to Psychosocial Stressors. Research and Perspectives in Endocrine Interactions, 2008, , 131-150.	0.2	1
57	Corticosteroid receptor function in the brain. European Journal of Pharmacology, 1990, 183, 125.	3.5	Ο
58	Corrigendum to "The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse― [Int. J. Dev. Neurosci. 23 (2003) 125-132]. International Journal of Developmental Neuroscience, 2006, 24, 293-293.	1.6	0
59	Corticosteroid Receptors. , 2007, , 594-605.		0
60	TRANSPORT OF EXOGENOUS BETA-LIPOTROPIN (ß-LPH) FROM THE PITUITARY TO THE CENTRAL NERVOUS SYSTEM OF THE RAT. , 1981, , 295-301.		0