Grzegorz Ä**w**ikÅ,a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1153957/publications.pdf

Version: 2024-02-01

1163117 940533 43 369 8 16 citations g-index h-index papers 43 43 43 241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of the Selected Disturbing Factors on Accuracy of the Distance Measurement with the Use of Ultrasonic Transducers in a Hard Coal Mine. Energies, 2022, 15, 133.	3.1	3
2	Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies, 2021, 14, 2532.	3.1	6
3	Similarity of Parts Determined by Semantic Networks as the Basis for Manufacturing Cost Estimation. Advances in Intelligent Systems and Computing, 2021, , 320-330.	0.6	О
4	Assessment of Similarity of Elements as a Basis for Production Costs Estimation. Advances in Intelligent Systems and Computing, 2020, , 386-395.	0.6	2
5	A Comparison Analysis of the Computer Simulation Results of a Real Production System. Advances in Intelligent Systems and Computing, 2020, , 344-354.	0.6	3
6	Predictive Maintenance Scheduling with Failure Rate Described by Truncated Normal Distribution. Sensors, 2020, 20, 6787.	3.8	5
7	Statistical process control and CAQ systems as a tools assuring quality in the automotive industry. Multidisciplinary Aspects of Production Engineering, 2019, 2, 336-344.	0.2	1
8	Analysis of complex manufacturing processes scheduling in different advanced informatics environments. IOP Conference Series: Materials Science and Engineering, 2018, 400, 062020.	0.6	0
9	Complex technical systems modelling and their mechatronics function simulation. IOP Conference Series: Materials Science and Engineering, 2018, 400, 042028.	0.6	0
10	Positioning a robot in a robotic cell in Tecnomatix. IOP Conference Series: Materials Science and Engineering, 2018, 400, 052002.	0.6	2
11	Experimental analysis of dynamic parameters of the robot's drive. IOP Conference Series: Materials Science and Engineering, 2018, 400, 052001.	0.6	0
12	A computer simulation as a tool for a production system analysis and optimization. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022033.	0.6	3
13	Optimization of energy consumption in a designed prototype vehicle in an advanced engineering environment. IOP Conference Series: Materials Science and Engineering, 2018, 400, 042041.	0.6	0
14	Assessment of the efficiency of the continuous improvement system based on Kaizen in an example company. IOP Conference Series: Materials Science and Engineering, 2018, 400, 062008.	0.6	3
15	The Kanban system for the assembly process of the model of a forklift. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022043.	0.6	0
16	The CAD drawing as a source of data for robot programming purposes – a review. MATEC Web of Conferences, 2017, 94, 05002.	0.2	12
17	Problems of integration of a manufacturing system with the business area of a company on the example of the Integrated Manufacturing Systems Laboratory. MATEC Web of Conferences, 2017, 94, 06004.	0.2	18
18	Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. MATEC Web of Conferences, 2017, 112, 04017.	0.2	12

#	Article	IF	CITATIONS
19	Algorithms of control parameters selection for automation of FDM 3D printing process. MATEC Web of Conferences, 2017, 112, 05011.	0.2	2
20	The influence of computer-generated path on the robot's effector stability of motion. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012045.	0.6	0
21	Modelling of teeth of a gear transmission for modern manufacturing technologies. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012080.	0.6	0
22	Modelling of industrial robot in LabView Robotics. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012011.	0.6	5
23	Analysis of the possibility of SysML and BPMN application in formal data acquisition system description. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012034.	0.6	2
24	The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012033.	0.6	116
25	Experimental determination of dynamic parameters of an industrial robot. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012012.	0.6	6
26	Analysis of design characteristics of a V-type support using an advanced engineering environment. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012053.	0.6	0
27	Integration of Manufacturing Functions for SME. Holonic-Based Approach. Advances in Intelligent Systems and Computing, 2017, , 464-473.	0.6	13
28	The role of multi-agent systems in improving performance of manufacturing robotized cells. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012097.	0.6	8
29	The Experimental Cutting Parameters Fitting in Turning Technological Operations for Selected Polyamide Materials. Applied Mechanics and Materials, 2015, 809-810, 159-164.	0.2	0
30	The laboratory station for tyres grip testing on different surfaces. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012092.	0.6	0
31	Application of the MIAS methodology in design of the data acquisition system for wastewater treatment plant. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012153.	0.6	16
32	The Graph of Operations Planning Sequence of a Production Order for Scheduling with Mixed Planning Strategies and Alternatives. Applied Mechanics and Materials, 2015, 809-810, 1420-1425.	0.2	0
33	The Expert System Supporting Design of the Manufacturing Information Acquisition System (MIAS) for Production Management. Advanced Materials Research, 2014, 1036, 852-857.	0.3	11
34	Case Study of Manufacturing Information Acquisition System (MIAS) in Automated Continuous Production System. Applied Mechanics and Materials, 2014, 657, 808-812.	0.2	10
35	The Practical Approach to Freeform Shape Elements Reverse Engineering. Applied Mechanics and Materials, 2014, 657, 755-759.	0.2	7
36	The New Approach to Design Features Identification. Applied Mechanics and Materials, 2014, 657, 750-754.	0.2	15

#	Article	IF	CITATIONS
37	Methods of Manufacturing Data Acquisition for Production Management - A Review. Advanced Materials Research, 0, 837, 618-623.	0.3	34
38	Real-Time Monitoring Station for Production Systems. Advanced Materials Research, 0, 837, 334-339.	0.3	16
39	The Methodology of Development of the Manufacturing Information Acquisition System (MIAS) for Production Management. Applied Mechanics and Materials, 0, 474, 27-32.	0.2	23
40	Semi-Automated Data Acquisition for Management of the Company in Non-Automated Production System $\hat{a}\in$ Case Study. Applied Mechanics and Materials, 0, 809-810, 1510-1515.	0.2	0
41	The pneumatic and electropneumatic systems in the context of 4 th industrial revolution. IOP Conference Series: Materials Science and Engineering, 0, 400, 022024.	0.6	7
42	Production orders planning using additional backward pass scheduling approach. IOP Conference Series: Materials Science and Engineering, 0, 400, 062015.	0.6	2
43	The initial considerations and tests on the use of real time locating system in manufacturing processes improvement. IOP Conference Series: Materials Science and Engineering, 0, 400, 042013.	0.6	6