List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1153841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A working heart-brainstem preparation of the mouse. Journal of Neuroscience Methods, 1996, 65, 63-68.	2.5	429
2	Spatial and Functional Architecture of the Mammalian Brain Stem Respiratory Network: A Hierarchy of Three Oscillatory Mechanisms. Journal of Neurophysiology, 2007, 98, 3370-3387.	1.8	383
3	Brainstem respiratory networks: building blocks and microcircuits. Trends in Neurosciences, 2013, 36, 152-162.	8.6	330
4	The yin and yang of cardiac autonomic control: Vago-sympathetic interactions revisited. Brain Research Reviews, 2005, 49, 555-565.	9.0	280
5	Lactate-mediated glia-neuronal signalling in the mammalian brain. Nature Communications, 2014, 5, 3284.	12.8	278
6	The Carotid Body as a Therapeutic Target for the Treatment of Sympathetically Mediated Diseases. Hypertension, 2013, 61, 5-13.	2.7	232
7	The sympathetic nervous system and blood pressure in humans: implications for hypertension. Journal of Human Hypertension, 2012, 26, 463-475.	2.2	213
8	Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. Journal of Physiology, 2008, 586, 3253-3265.	2.9	211
9	The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nature Communications, 2013, 4, 2395.	12.8	204
10	Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. Journal of Physiology, 2012, 590, 4269-4277.	2.9	188
11	Respiratory rhythm generation during gasping depends on persistent sodium current. Nature Neuroscience, 2006, 9, 311-313.	14.8	184
12	Amplified respiratory–sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension?. Journal of Physiology, 2009, 587, 597-610.	2.9	178
13	Abdominal expiratory activity in the rat brainstem–spinal cord <i>in situ</i> : patterns, origins and implications for respiratory rhythm generation. Journal of Physiology, 2009, 587, 3539-3559.	2.9	173
14	Autonomic-Immune-Vascular Interaction. Hypertension, 2011, 57, 1026-1033.	2.7	157
15	Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiological Genomics, 2003, 12, 221-228.	2.3	154
16	Adenoviral vector demonstrates that angiotensin Ilâ€induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. Journal of Physiology, 2001, 531, 445-458.	2.9	151
17	Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nature Medicine, 2016, 22, 1151-1159.	30.7	149
18	Correction of respiratory disorders in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18208-18213.	7.1	146

#	Article	IF	CITATIONS
19	The human ventilatory response to stress: rate or depth?. Journal of Physiology, 2017, 595, 5729-5752.	2.9	141
20	Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nature Communications, 2020, 11, 131.	12.8	137
21	Essential Role of Phox2b-Expressing Ventrolateral Brainstem Neurons in the Chemosensory Control of Inspiration and Expiration. Journal of Neuroscience, 2010, 30, 12466-12473.	3.6	136
22	Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Progress in Brain Research, 2007, 165, 201-220.	1.4	132
23	Modeling Neural Mechanisms for Genesis of Respiratory Rhythm and Pattern. II. Network Models of the Central Respiratory Pattern Generator. Journal of Neurophysiology, 1997, 77, 2007-2026.	1.8	120
24	Unilateral Carotid Body Resection inÂResistant Hypertension. JACC Basic To Translational Science, 2016, 1, 313-324.	4.1	118
25	Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation–perfusion efficiency. Journal of Physiology, 2012, 590, 1989-2008.	2.9	106
26	μ opioid receptor activation hyperpolarizes respiratoryâ€controlling Kölliker–Fuse neurons and suppresses postâ€inspiratory drive. Journal of Physiology, 2015, 593, 4453-4469.	2.9	103
27	Differential effects of angiotensin II on cardiorespiratory reflexes mediated by nucleus tractus solitarii - a microinjection study in the rat. Journal of Physiology, 1999, 521, 213-225.	2.9	99
28	Characterizations of eupnea, apneusis and gasping in a perfused rat preparation. Respiration Physiology, 2000, 123, 201-213.	2.7	99
29	Chemoreceptor Hypersensitivity, Sympathetic Excitation, and Overexpression of ASIC and TASK Channels Before the Onset of Hypertension in SHR. Circulation Research, 2010, 106, 536-545.	4.5	99
30	Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. Journal of Physiology, 2003, 546, 233-242.	2.9	98
31	Carotid body resection for sympathetic modulation in systolic heart failure: results from firstâ€inâ€man study. European Journal of Heart Failure, 2017, 19, 391-400.	7.1	97
32	Junctional Adhesion Molecule-1 Is Upregulated in Spontaneously Hypertensive Rats. Hypertension, 2007, 49, 1321-1327.	2.7	92
33	Harvey Cushing and the regulation of blood pressure in giraffe, rat and man: introducing â€~Cushing's mechanism'. Experimental Physiology, 2009, 94, 11-17.	2.0	86
34	Sympatheticâ€mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Experimental Physiology, 2009, 94, 972-983.	2.0	86
35	Modeling Neural Mechanisms for Genesis of Respiratory Rhythm and Pattern. I. Models of Respiratory Neurons. Journal of Neurophysiology, 1997, 77, 1994-2006.	1.8	85
36	Quantifying sympathetic neuroâ€haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. Journal of Physiology, 2016, 594, 4753-4768.	2.9	85

#	Article	IF	CITATIONS
37	Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. Journal of Neurophysiology, 2011, 105, 3080-3091.	1.8	84
38	Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart, 2016, 102, 1671-1679.	2.9	84
39	Carotid body removal for treatment of chronic systolic heart failure. International Journal of Cardiology, 2013, 168, 2506-2509.	1.7	83
40	Late-Expiratory Activity: Emergence and Interactions With the Respiratory CPG. Journal of Neurophysiology, 2010, 104, 2713-2729.	1.8	82
41	Brainstem Hypoxia Contributes to the Development of Hypertension in the Spontaneously Hypertensive Rat. Hypertension, 2015, 65, 775-783.	2.7	81
42	Involvement ofl-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. Journal of Physiology, 2007, 581, 1129-1145.	2.9	79
43	Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. Journal of Physiology, 2016, 594, 7249-7265.	2.9	79
44	A spinal vasopressinergic mechanism mediates hyperosmolalityâ€induced sympathoexcitation. Journal of Physiology, 2006, 576, 569-583.	2.9	74
45	Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. Journal of Molecular Medicine, 2008, 86, 705-710.	3.9	74
46	Automation of analysis of cardiovascular autonomic function from chronic measurements of arterial pressure in conscious rats. Experimental Physiology, 2006, 91, 201-213.	2.0	73
47	Pontomedullary transection attenuates central respiratory modulation of sympathetic discharge, heart rate and the baroreceptor reflex in the <i>in situ</i> rat preparation. Experimental Physiology, 2008, 93, 803-816.	2.0	71
48	The Logic of Carotid Body Connectivity to the Brain. Physiology, 2019, 34, 264-282.	3.1	71
49	Glycinergic inhibition is essential for coâ€ordinating cranial and spinal respiratory motor outputs in the neonatal rat. Journal of Physiology, 2002, 543, 643-653.	2.9	70
50	Changes in baroreceptor vagal reflex performance in the developing rat. Pflugers Archiv European Journal of Physiology, 1997, 434, 438-444.	2.8	69
51	Investigation and Treatment of High Blood Pressure in Young People. Hypertension, 2020, 75, 16-22.	2.7	69
52	Kidney-Induced Hypertension Depends on Superoxide Signaling in the Rostral Ventrolateral Medulla. Hypertension, 2010, 56, 290-296.	2.7	67
53	Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata. Cardiovascular Research, 2011, 91, 703-710.	3.8	67
54	Differential effects of angiotensin II in the nucleus tractus solitarii of the rat - plausible neuronal mechanisms. Journal of Physiology, 1999, 521, 227-238.	2.9	66

#	Article	IF	CITATIONS
55	Is High Blood Pressure Self-Protection for the Brain?. Circulation Research, 2016, 119, e140-e151.	4.5	66
56	Respiratory activity in neonatal rats. Autonomic Neuroscience: Basic and Clinical, 2000, 84, 19-29.	2.8	65
57	A decerebrate, artificially-perfused in situ preparation of rat: Utility for the study of autonomic and nociceptive processing. Journal of Neuroscience Methods, 2006, 155, 260-271.	2.5	65
58	Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiologica, 2017, 219, 274-287.	3.8	65
59	Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. Journal of Physiology, 2011, 589, 5801-5818.	2.9	63
60	Specific Respiratory Neuron Types Have Increased Excitability That Drive Presympathetic Neurones in Neurogenic Hypertension. Hypertension, 2014, 63, 1309-1318.	2.7	63
61	Revelations About Carotid Body Function Through its Pathological Role in Resistant Hypertension. Current Hypertension Reports, 2013, 15, 273-280.	3.5	62
62	Vascular-brain signaling in hypertension: Role of angiotensin II and nitric oxide. Current Hypertension Reports, 2007, 9, 242-247.	3.5	59
63	Rhythmic bursting of pre- and post-inspiratory neurones during central apnoea in mature mice. Journal of Physiology, 1997, 502, 623-639.	2.9	55
64	Hypertension and coarctation of the aorta: an inevitable consequence of developmental pathophysiology. Hypertension Research, 2011, 34, 543-547.	2.7	53
65	Convergence properties of solitary tract neurones driven synaptically by cardiac vagal afferents in the mouse. Journal of Physiology, 1998, 508, 237-252.	2.9	52
66	Mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii. FASEB Journal, 2006, 20, 1537-1539.	0.5	52
67	Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure. Experimental Physiology, 2014, 99, 552-561.	2.0	52
68	Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation. Molecular Brain, 2016, 9, 1.	2.6	52
69	Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. Journal of Physiology, 2017, 595, 967-981.	2.9	52
70	Do changes in the coupling between respiratory and sympathetic activities contribute to neurogenic hypertension?. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1188-1196.	1.9	51
71	Deficiency of GABAergic synaptic inhibition in the Kölliker–Fuse area underlies respiratory dysrhythmia in a mouse model of Rett syndrome. Journal of Physiology, 2016, 594, 223-237	2.9	51
72	Nitric oxide is fundamental to neurovascular coupling in humans. Journal of Physiology, 2020, 598, 4927-4939.	2.9	51

#	Article	IF	CITATIONS
73	Genetic and pharmacological dissection of pathways involved in the angiotensin Ilâ€mediated depression of baroreflex function. FASEB Journal, 2002, 16, 1595-1601.	0.5	50
74	REFLEXLY EVOKED COACTIVATION OF CARDIAC VAGAL AND SYMPATHETIC MOTOR OUTFLOWS: OBSERVATIONS AND FUNCTIONAL IMPLICATIONS. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1245-1250.	1.9	49
75	Arteriovenous Anastomosis. Hypertension, 2014, 64, 6-12.	2.7	49
76	Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors. Journal of Comparative Neurology, 2000, 417, 233-249.	1.6	48
77	Hierarchical recruitment of the sympathetic and parasympathetic limbs of the baroreflex in normotensive and spontaneously hypertensive rats. Journal of Physiology, 2007, 579, 473-486.	2.9	48
78	Central regulation of heart rate and the appearance of respiratory sinus arrhythmia: New insights from mathematical modeling. Mathematical Biosciences, 2014, 255, 71-82.	1.9	48
79	Nucleus Tractus Solitarii: Integrating Structures. Experimental Physiology, 1999, 84, 815-833.	2.0	47
80	Inhibitory synaptic mechanisms regulating upper airway patency. Respiratory Physiology and Neurobiology, 2002, 131, 57-63.	1.6	47
81	Optimal solid state neurons. Nature Communications, 2019, 10, 5309.	12.8	47
82	Excessive Leukotriene B4 in Nucleus Tractus Solitarii Is Prohypertensive in Spontaneously Hypertensive Rats. Hypertension, 2013, 61, 194-201.	2.7	44
83	Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm. European Radiology, 2017, 27, 1125-1135.	4.5	44
84	Neurogenic Hypertension and Elevated Vertebrobasilar Arterial Resistance: Is There a Causative Link?. Current Hypertension Reports, 2012, 14, 261-269.	3.5	43
85	Sympathetic overactivity occurs before hypertension in the twoâ€kidney, oneâ€clip model. Experimental Physiology, 2016, 101, 67-80.	2.0	43
86	Brain stem P <scp>o</scp> ₂ and pH of the working heart-brain stem preparation during vascular perfusion with aqueous medium. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R528-R538.	1.8	41
87	Joint UK societies' 2014 consensus statement on renal denervation for resistant hypertension. Heart, 2015, 101, 10-16.	2.9	41
88	Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats. Journal of Physiology, 2016, 594, 6255-6266.	2.9	41
89	Role of the solitary tract nucleus in mediating nociceptive evoked cardiorespiratory responses. Autonomic Neuroscience: Basic and Clinical, 2001, 86, 170-182.	2.8	39
90	The Relationship Between Left Ventricular Wall Thickness, Myocardial Shortening, and Ejection Fraction in Hypertensive Heart Disease: Insights From Cardiac Magnetic Resonance Imaging. Journal of Clinical Hypertension, 2016, 18, 1119-1127.	2.0	39

#	Article	IF	CITATIONS
91	The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting. Journal of Neurophysiology, 2018, 119, 401-412.	1.8	38
92	Antihypertensive Treatment Fails to Control Blood Pressure During Exercise. Hypertension, 2018, 72, 102-109.	2.7	38
93	Elevated vertebrobasilar artery resistance in neonatal spontaneously hypertensive rats. Journal of Applied Physiology, 2011, 111, 149-156.	2.5	37
94	Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target?. Journal of Physiology, 2016, 594, 6463-6485.	2.9	36
95	GABA A receptor É⁄â€subunit may confer benzodiazepine insensitivity to the caudal aspect of the nucleus tractus solitarii of the rat. Journal of Physiology, 2001, 536, 785-796.	2.9	35
96	Sensory Afferent Selective Role of P2 Receptors in the Nucleus Tractus Solitarii for Mediating the Cardiac Component of the Peripheral Chemoreceptor Reflex in Rats. Journal of Physiology, 2002, 543, 995-1005.	2.9	34
97	Enhancement of cellâ€specific transgene expression from a Tetâ€Off regulatory system using a transcriptional amplification strategy in the rat brain. Journal of Gene Medicine, 2008, 10, 583-592.	2.8	34
98	Increasing brain serotonin corrects CO ₂ chemosensitivity in methylâ€CpGâ€binding protein 2 (Mecp2)â€deficient mice. Experimental Physiology, 2013, 98, 842-849.	2.0	34
99	Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2. Journal of Neuroscience, 2015, 35, 5144-5155.	3.6	34
100	ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study. European Heart Journal Cardiovascular Imaging, 2017, 18, 441-450.	1.2	34
101	Importance of neurokinin-1 receptors in the nucleus tractus solitarii of mice for the integration of cardiac vagal inputs. European Journal of Neuroscience, 1998, 10, 2261-2275.	2.6	33
102	Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat <i>in situ</i> . Journal of Physiology, 2009, 587, 3175-3188.	2.9	33
103	GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circulation Research, 2022, 130, 694-707.	4.5	33
104	Unravelling mechanisms of action of angiotensin II on cardiorespiratory function usingin vivogene transfer. Acta Physiologica Scandinavica, 2001, 173, 127-137.	2.2	32
105	Dominant role of aortic baroreceptors in the cardiac baroreflex of the rat in situ. Autonomic Neuroscience: Basic and Clinical, 2008, 142, 32-39.	2.8	32
106	Chronic Knockdown of the Nucleus of the Solitary Tract AT ₁ Receptors Increases Blood Inflammatory-Endothelial Progenitor Cell Ratio and Exacerbates Hypertension in the Spontaneously Hypertensive Rat. Hypertension, 2013, 61, 1328-1333.	2.7	30
107	Transcription Factor CREB3L1 Regulates Endoplasmic Reticulum Stress Response Genes in the Osmotically Challenged Rat Hypothalamus. PLoS ONE, 2015, 10, e0124956.	2.5	30
108	Central control of upper airway resistance regulating respiratory airflow in mammals. Journal of Anatomy, 2002, 201, 319-323.	1.5	29

#	Article	IF	CITATIONS
109	Coupling of sympathetic and somatic motor outflows from the spinal cord in a perfused preparation of adult mousein vitro. Journal of Physiology, 1998, 508, 907-918.	2.9	28
110	Effects of selective carotid body stimulation with adenosine in conscious humans. Journal of Physiology, 2016, 594, 6225-6240.	2.9	28
111	On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. Journal of Physiology, 2019, 597, 3407-3423.	2.9	28
112	An Exploration of the Control of Micturition Using a Novel in Situ Arterially Perfused Rat Preparation. Frontiers in Neuroscience, 2011, 5, 62.	2.8	27
113	Locus Coeruleus as a vigilance centre for active inspiration and expiration in rats. Scientific Reports, 2018, 8, 15654.	3.3	27
114	NUCLEUS TRACTUS SOLITARII: INTEGRATING STRUCTURES. Experimental Physiology, 1999, 84, 815-833.	2.0	27
115	Detection of angiotensin II mediated nitric oxide release within the nucleus of the solitary tract using electron-paramagnetic resonance (EPR) spectroscopy. Autonomic Neuroscience: Basic and Clinical, 2006, 126-127, 193-201.	2.8	26
116	Optical imaging of medullary ventral respiratory network during eupnea and gaspingIn situ. European Journal of Neuroscience, 2006, 23, 3025-3033.	2.6	26
117	Transcription factor CREB3L1 mediates cAMP and glucocorticoid regulation of arginine vasopressin gene transcription in the rat hypothalamus. Molecular Brain, 2015, 8, 68.	2.6	26
118	P2X3 receptors and sensitization of autonomic reflexes. Autonomic Neuroscience: Basic and Clinical, 2015, 191, 16-24.	2.8	25
119	Chronic depression of hypothalamic paraventricular neuronal activity produces sustained hypotension in hypertensive rats. Experimental Physiology, 2014, 99, 89-100.	2.0	24
120	Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats. Journal of Physiology, 2018, 596, 3201-3216.	2.9	24
121	Respiratory modulated sympathetic activity: a putative mechanism for developing vascular resistance?. Journal of Physiology, 2015, 593, 5341-5360.	2.9	23
122	Autonomic innervation of the carotid body as a determinant of its sensitivity: implications for cardiovascular physiology and pathology. Cardiovascular Research, 2021, 117, 1015-1032.	3.8	23
123	Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic Research in Cardiology, 2022, 117, 4.	5.9	23
124	Counterpoint: Medullary Pacemaker Neurons are Essential for Gasping, but not Eupnea, in Mammals. Journal of Applied Physiology, 2007, 103, 718-720.	2.5	22
125	Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration. Journal of Physiology, 2011, 589, 4457-4471.	2.9	22
126	Advancing respiratory–cardiovascular physiology with the working heart–brainstem preparation over 25 years. Journal of Physiology, 2022, 600, 2049-2075.	2.9	22

#	Article	IF	CITATIONS
127	Response Properties of Baroreceptive NTS Neurons. Annals of the New York Academy of Sciences, 2001, 940, 157-168.	3.8	21
128	Hypertension: a problem of organ blood flow supply–demand mismatch. Future Cardiology, 2016, 12, 339-349.	1.2	21
129	Control of Polyamine Biosynthesis by Antizyme Inhibitor 1 Is Important for Transcriptional Regulation of Arginine Vasopressin in the Male Rat Hypothalamus. Endocrinology, 2015, 156, 2905-2917.	2.8	20
130	Ischaemia-induced sympathoexcitation in spinalyzed rats. Neuroscience Letters, 2007, 415, 73-76.	2.1	19
131	RNA binding protein Caprin-2 is a pivotal regulator of the central osmotic defense response. ELife, 2015, 4, .	6.0	18
132	Vasopressin V1a receptors mediate the hypertensive effects of [Pyr ¹]apelinâ€13 in the rat rostral ventrolateral medulla. Journal of Physiology, 2017, 595, 3303-3318.	2.9	18
133	Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the <i>in situ</i> arterially perfused preparation of rats. Experimental Physiology, 2014, 99, 1453-1466.	2.0	17
134	Influence of age on respiratory modulation of muscle sympathetic nerve activity, blood pressure and baroreflex function in humans. Experimental Physiology, 2015, 100, 1039-1051.	2.0	17
135	The effect of obesity on electrocardiographic detection of hypertensive left ventricular hypertrophy: recalibration against cardiac magnetic resonance. Journal of Human Hypertension, 2016, 30, 197-203.	2.2	17
136	Acute hydrocortisone administration reduces cardiovagal baroreflex sensitivity and heart rate variability in young men. Journal of Physiology, 2018, 596, 4847-4861.	2.9	17
137	Oxygenation pattern and compensatory responses to hypoxia and hypercapnia following bilateral carotid body resection in humans. Journal of Physiology, 2021, 599, 2323-2340.	2.9	17
138	Water deprivation increases the expression of neuronal nitric oxide synthase (nNOS) but not orexin-A in the lateral hypothalamic area of the rat. Journal of Comparative Neurology, 2005, 490, 180-193.	1.6	16
139	Carotid body overactivity induces respiratory neurone channelopathy contributing to neurogenic hypertension. Journal of Physiology, 2015, 593, 3055-3063.	2.9	16
140	Defining inhibitory neurone function in respiratory circuits: opportunities with optogenetics?. Journal of Physiology, 2015, 593, 3033-3046.	2.9	16
141	Efficacy of Electrical Baroreflex Activation Is Independent of Peripheral Chemoreceptor Modulation. Hypertension, 2020, 75, 257-264.	2.7	16
142	Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats. Journal of Physiology, 2021, 599, 4925-4948.	2.9	16
143	Mapping the cellular electrophysiology of rat sympathetic preganglionic neurones to their roles in cardiorespiratory reflex integration: a whole cell recording study in situ. Journal of Physiology, 2014, 592, 2215-2236.	2.9	15
144	Systemic leukotriene B ₄ receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat. Journal of Physiology, 2016, 594, 5975-5989.	2.9	15

JULIAN F R PATON

#	Article	IF	CITATIONS
145	Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats. Scientific Reports, 2017, 7, 16883.	3.3	15
146	Purinergic plasticity within petrosal neurons in hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R963-R971.	1.8	15
147	Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction. Journal of Physiology, 2020, 598, 455-471.	2.9	15
148	Sex differences in the sympathetic neurocirculatory responses to chemoreflex activation. Journal of Physiology, 2022, , .	2.9	15
149	Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Frontiers in Physiology, 2017, 8, 752.	2.8	14
150	Noctural dipping status and left ventricular hypertrophy: A cardiac magnetic resonance imaging study. Journal of Clinical Hypertension, 2018, 20, 784-793.	2.0	14
151	Sympathetic-transduction in untreated hypertension. Journal of Human Hypertension, 2022, 36, 24-31.	2.2	14
152	The sympathetic nervous system exacerbates carotid body sensitivity in hypertension. Cardiovascular Research, 2023, 119, 316-331.	3.8	14
153	A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). New Zealand Medical Journal, 2020, 133, 85-87.	0.5	14
154	Transgenic neuronal nitric oxide synthase expression induces axotomy-like changes in adult motoneurons. Journal of Physiology, 2010, 588, 3425-3443.	2.9	13
155	Cerebral Blood Flow Response to Simulated Hypovolemia in Essential Hypertension. Hypertension, 2019, 74, 1391-1398.	2.7	13
156	Whole Cell Recordings From Respiratory Neurones in an Arterially Perfused in situ Neonatal Rat Preparation. Experimental Physiology, 2003, 88, 725-732.	2.0	12
157	Hypertension Before and After Posterior Circulation Infarction: Analysis of Data from the South London Stroke Register. Journal of Stroke and Cerebrovascular Diseases, 2012, 21, 612-618.	1.6	12
158	Modulation of respiratory sinus arrhythmia in rats with central pattern generator hardware. Journal of Neuroscience Methods, 2013, 212, 124-132.	2.5	12
159	The inevitability of ATP as a transmitter in the carotid body. Autonomic Neuroscience: Basic and Clinical, 2021, 234, 102815.	2.8	12
160	5-HT4 receptors in nucleus tractus solitarii attenuate cardiopulmonary reflex in anesthetized rats. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1914-H1923.	3.2	11
161	Salt Appetite Is Reduced by a Single Experience of Drinking Hypertonic Saline in the Adult Rat. PLoS ONE, 2014, 9, e104802.	2.5	11
162	Hypothalamic paraventricular nucleus neuronal nitric oxide synthase activity is a major determinant of renal sympathetic discharge in conscious Wistar rats. Experimental Physiology, 2018, 103, 419-428.	2.0	11

#	Article	IF	CITATIONS
163	Repaired coarctation of the aorta, persistent arterial hypertension and the selfish brain. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 68.	3.3	11
164	Long-term intracellular recordings of respiratory neuronal activities in situ during eupnea, gasping and blockade of synaptic transmission. Journal of Neuroscience Methods, 2005, 147, 138-145.	2.5	10
165	Modelling the vascular response to sympathetic postganglionic nerve activity. Journal of Theoretical Biology, 2015, 371, 102-116.	1.7	10
166	Cerebral AÎ ² 40 and systemic hypertension. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1993-2005.	4.3	9
167	Shift of leading pacemaker site during reflex vagal stimulation and altered electrical sourceâ€ŧoâ€sink balance. Journal of Physiology, 2019, 597, 3297-3313.	2.9	9
168	Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1803-1817.	4.3	9
169	Heartbeats entrain breathing via baroreceptorâ€mediated modulation of expiratory activity. Experimental Physiology, 2021, 106, 1181-1195.	2.0	9
170	Somatic Gene Transfer: Implications for Cardiovascular Control. Experimental Physiology, 2000, 85, 747-755.	2.0	8
171	Normalization of Autonomic Function in Children With Coarctation of the Aorta After Surgical Correction in Infancy. Hypertension, 2009, 54, e21-2.	2.7	8
172	Cell- and region-specific miR30-based gene knock-down with temporal control in the rat brain. BMC Molecular Biology, 2010, 11, 93.	3.0	8
173	CrossTalk opposing view: Which technique for controlling resistant hypertension? Carotid chemoreceptor denervation/modulation. Journal of Physiology, 2014, 592, 3941-3944.	2.9	8
174	Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat. Journal of Neuroendocrinology, 2016, 28, .	2.6	8
175	Differences in autonomic innervation to the vertebrobasilar arteries in spontaneously hypertensive and Wistar rats. Journal of Physiology, 2018, 596, 3505-3529.	2.9	8
176	Gravitational effects on intracranial pressure and blood flow regulation in young men: a potential shunting role for the external carotid artery. Journal of Applied Physiology, 2020, 129, 901-908.	2.5	8
177	Zibotentan, an Endothelin A Receptor Antagonist, Prevents Amyloid-β-Induced Hypertension and Maintains Cerebral Perfusion. Journal of Alzheimer's Disease, 2020, 73, 1185-1199.	2.6	8
178	Retrograde blood flow in the internal jugular veins of humans with hypertension may have implications for cerebral arterial blood flow. European Radiology, 2020, 30, 3890-3899.	4.5	8
179	K+ channel blockade in the NTS alters efficacy of two cardiorespiratory reflexes in vivo. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R677-R685. 	1.8	7
180	Osmotic regulation of neuronal nitric oxide synthase expression in the rat amygdala: Functional role for nitric oxide in adaptive responses?. Journal of Neuroscience Research, 2007, 85, 410-422.	2.9	7

#	Article	IF	CITATIONS
181	Utility of a Novel Biofeedback Device for Within-Breath Modulation of Heart Rate in Rats: A Quantitative Comparison of Vagus Nerve vs. Right Atrial Pacing. Frontiers in Physiology, 2016, 7, 27.	2.8	7
182	Electrocardiographic detection of hypertensive left atrial enlargement in the presence of obesity: re-calibration against cardiac magnetic resonance. Journal of Human Hypertension, 2017, 31, 212-219.	2.2	7
183	Heart failure developed after myocardial infarction does not affect gut microbiota composition in the rat. American Journal of Physiology - Renal Physiology, 2019, 317, G342-G348.	3.4	7
184	Left ventricular extracellular volume fraction and atrioventricular interaction in hypertension. European Radiology, 2019, 29, 1574-1585.	4.5	7
185	Role of the Carotid Body in an Ovine Model of Renovascular Hypertension. Hypertension, 2020, 76, 1451-1460.	2.7	7
186	Active expiratory oscillator regulates nasofacial and oral motor activities in rats. Experimental Physiology, 2020, 105, 379-392.	2.0	6
187	Increased apelin receptor gene expression in the subfornical organ of spontaneously hypertensive rats. PLoS ONE, 2020, 15, e0231844.	2.5	6
188	Cardiorespiratory reflexes in a working heart–brainstem preparation of the house musk shrew, Suncus murinus. Autonomic Neuroscience: Basic and Clinical, 2001, 89, 54-59.	2.8	5
189	Blockade of Rostral Ventrolateral Medulla Apelin Receptors Does Not Attenuate Arterial Pressure in SHR and L-NAME-Induced Hypertensive Rats. Frontiers in Physiology, 2018, 9, 1488.	2.8	5
190	Centrally acting adrenomedullin in the longâ€ŧerm potentiation of sympathetic vasoconstrictor activity induced by intermittent hypoxia in rats. Experimental Physiology, 2019, 104, 1371-1383.	2.0	5
191	Therapeutic Relevance of Elevated Blood Pressure After Ischemic Stroke in the Hypertensive Rats. Hypertension, 2020, 75, 740-747.	2.7	5
192	Significant contribution from the thoracic spinal cord in mediating ischaemia induced sympathoâ€excitation FASEB Journal, 2006, 20, A775.	0.5	5
193	Patterns of cardio-respiratory motor outputs during acute and subacute exposure to chlorpyrifos in an ex-vivo in situ preparation in rats. Toxicology and Applied Pharmacology, 2022, 436, 115862.	2.8	5
194	Targeting autonomic imbalance in pathophysiology: is the carotid body the new nirvana?. Journal of Physiology, 2017, 595, 29-30.	2.9	4
195	Clarity of the rhythmic brainstem. Journal of Physiology, 2020, 598, 2045-2046.	2.9	4
196	New understanding of circulatory blood flow and arterial blood pressure mechanisms. Cardiovascular Research, 2022, 118, e29-e31.	3.8	4
197	Sudden cardiac deaths have higher proportion of left stellate ganglionitis. Forensic Science, Medicine, and Pathology, 2022, 18, 156-164.	1.4	4
198	Heightened respiratoryâ€parasympathetic coupling to airways in the spontaneously hypertensive rat. Journal of Physiology, 2021, 599, 3237-3252.	2.9	3

#	Article	IF	CITATIONS
199	NOS Antagonism Using Viral Vectors as an Experimental Strategy: Implications for In Vivo Studies of Cardiovascular Control and Peripheral Neuropathies. Methods in Molecular Biology, 2011, 704, 197-223.	0.9	3
200	Role of ClyT 2 expressing neurons in the Bötzinger Complex for respiratory rhythm and pattern generation. FASEB Journal, 2010, 24, 614.3.	0.5	3
201	Neurovascular coupling is not influenced by lower body negative pressure in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H22-H31.	3.2	3
202	Aortic Body Chemoreceptors Regulate Coronary Blood Flow in Conscious Control and Hypertensive Sheep. Hypertension, 2022, 79, 1275-1285.	2.7	3
203	Exercise with angina and cramp?. Journal of Physiology, 2011, 589, 261-262.	2.9	2
204	A6 neurons simultaneously modulate active expiration and upper airway resistance in rats. Experimental Physiology, 2020, 105, 53-64.	2.0	2
205	Cardiac output is improved in rats with myocardial infarction by enhancement of respiratory sinus arrhythmia. FASEB Journal, 2015, 29, 1043.3.	0.5	2
206	Chronic inhibition of phosphoinositideâ€3â€kinase (PI3K) in the nucleus of the solitary tract (NTS) of hypertensive rats increases blood pressure. FASEB Journal, 2007, 21, A899.	0.5	2
207	DISTINCT BRAINSTEM ORIGINS OF CARDIAC VAGAL TONE AND RESPIRATORY SINUS ARRHYTHMIA. FASEB Journal, 2015, 29, 1056.3.	0.5	2
208	Mathematical modelling of atrial and ventricular pressure–volume dynamics and their change with heart rate. Mathematical Biosciences, 2022, 344, 108766.	1.9	2
209	Editorial: Hypoxia and Cardiorespiratory Control. Frontiers in Physiology, 2021, 12, 820815.	2.8	2
210	Cerebrovascular Variants and the Role of the Selfish Brain in Young-Onset Hypertension. Hypertension, 2022, 79, 1265-1274.	2.7	2
211	Cardiorespiratory responses to muscle metaboreflex activation in fibrosing interstitial lung disease. Experimental Physiology, 2022, 107, 527-540.	2.0	2
212	Examination of the periaqueductal gray as a site for controlling arterial pressure in the conscious spontaneously hypertensive rat. Autonomic Neuroscience: Basic and Clinical, 2022, 240, 102984.	2.8	2
213	Peripheral chemoreflex activation induces expiratory but not inspiratory excitation of <scp>C1</scp> preâ€sympathetic neurones of rats. Acta Physiologica, 2022, 235, .	3.8	2
214	144â€Does Home-Based, Slow Deep Breathing Training Reduce Central Sympathetic Outflow and Enhance Baroreflex Sensivitiy in Primary Hypertension?. Heart, 2015, 101, A83.1-A83.	2.9	1
215	Sympathetic Modulation By Glucagon Like Peptide 1 And Melanocortin 4 Receptors In The Carotid Body Of Wistar Rats. FASEB Journal, 2021, 35, .	0.5	1
216	Circumventricular Organ Apelin Receptor Knockdown Decreases Blood Pressure and Sympathetic Drive Responses in the Spontaneously Hypertensive Rat. Frontiers in Physiology, 2021, 12, 711041.	2.8	1

#	Article	IF	CITATIONS
217	Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors. , 2000, 417, 233.		1
218	Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors. Journal of Comparative Neurology, 2000, 417, 233.	1.6	1
219	Baroreceptor receptive Bötzinger expiratory (E) neurons in the ventrolateral medulla of the inâ€situ perfused rat. FASEB Journal, 2007, 21, A562.	0.5	1
220	Carotid body induced postâ€inspiratory neuron channelopathy for neurogenic hypertension (872.9). FASEB Journal, 2014, 28, 872.9.	0.5	1
221	P2X3 receptorâ€mediated chemoreceptor hypersensitivity in young spontaneous hypertensive rats. FASEB Journal, 2015, 29, 652.4.	0.5	1
222	Pontoâ€medullary transection attenuates sympathorespiratory coupling and eliminates cardiac sinus arrhythmia in the in situ rat. FASEB Journal, 2008, 22, 739.6.	0.5	1
223	Nucleus tractus solitarii (NTS) blood flow and oxygenation are compromised in spontaneously hypertensive rats (SHR). FASEB Journal, 2009, 23, 959.3.	0.5	1
224	Suppression of expiratory activity in a mouse model of Rett Syndrome follows blockade of GABA reuptake and activation of serotonin type 1a receptors. FASEB Journal, 2010, 24, 613.9.	0.5	1
225	Increased intrinsic excitability of muscle vasoconstrictor sympathetic preganglionic neurones in neonatal spontaneously hypertensive rats. FASEB Journal, 2010, 24, 809.13.	0.5	1
226	New lentiviral vector to selectively target glycinergic neurons in the brainstem. FASEB Journal, 2010, 24, 614.2.	0.5	1
227	Spiking behavior and membrane potential trajectories of preâ€BötC and hypoglossal neurons recorded from the rat in situ. FASEB Journal, 2011, 25, .	0.5	1
228	Altered respiratory related bursting of muscle sympathetic nerve activity in humans with essential hypertension. FASEB Journal, 2011, 25, 1076.2.	0.5	1
229	Long term enhancement of cerebral vascular resistance in spontaneously hypertensive rats produces short term pressor responses and long term reâ€modelling of cerebral circulation. FASEB Journal, 2012, 26, 1091.53.	0.5	1
230	Functional connectivity between Bötzinger complex glycinergic neurons and parafacial lateâ€expiratory neurons for expiratory and sympathetic control (712.17). FASEB Journal, 2014, 28, 712.17.	0.5	1
231	Formal Modeling and Verification of Rate Adaptive Pacemakers for Heart Failure. , 2020, , .		1
232	Effects of hypoxia and hyperoxia on venous capacity and compliance in healthy men and women. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R445-R453.	1.8	1
233	Cardiovascular Genomics Themed Issue. Experimental Physiology, 2005, 90, 271-272.	2.0	0
234	Response to Junctional Adhesion Molecule-1 May Have a Wider Role in Cardiovascular Disease. Hypertension, 2007, 50, .	2.7	0

#	Article	IF	CITATIONS
235	Rebuttal from L. E. K. Ratcliffe, W. Pijacka, F. D. McBryde, A. P. Abdala, D. J. Moraes, P. A. Sobotka, E. C. Hart, K. Narkiewicz, A. K. Nightingale and J. F. R. Paton. Journal of Physiology, 2014, 592, 3949-3950.	2.9	0
236	Insights gleaned from pharmacoâ€genetic dissection and modelling of cardioâ€respiratory neural networks. Journal of Physiology, 2015, 593, 3031-3031.	2.9	0
237	Autonomic and neuroendocrine dysfunction in chronic disease. Journal of Physiology, 2016, 594, 1579-1580.	2.9	0
238	003â€Detecting hypertensive heart disease: The additive value of cardiovascular magnetic resonance imaging. Heart, 2016, 102, A1.3-A1.	2.9	0
239	010â€Insights into hypertensive heart disease phenotypes: Spectrum of myocyte, interstitial and vascular changes by cardiovascular MRI. Heart, 2016, 102, A4.1-A4.	2.9	0
240	Cardiac magnetic resonance imaging provides new insight into hypertensive heart disease—a reply. Journal of Clinical Hypertension, 2017, 19, 335-336.	2.0	0
241	Reply from Michael J. Tipton, Joseph T. Costello and Julian F. R. Paton. Journal of Physiology, 2017, 595, 6365-6365.	2.9	0
242	Denervated or Not? That Remains the Question for Renal Denervation. Hypertension, 2019, 74, 493-494.	2.7	0
243	Are pacemaker neurons active in eupnea when generated by an intact pontoâ€medullary network?. FASEB Journal, 2006, 20, A369.	0.5	0
244	A NOVEL IN SITU APPROACH FOR STUDYING THE HYPOTHALAMIC CONTROL OF HYPEROSMOLALITY INDUCED SYMPATHOEXCITATION. FASEB Journal, 2006, 20, .	0.5	0
245	Respiratory modulation of thoracic sympathetic nerve activity increased following brief hypoxia in the rat in situ preparation. FASEB Journal, 2006, 20, LB36.	0.5	0
246	Downâ€regulation of leukotriene B4 12â€hydroxydehydrogenase gene in the nucleus tractus solitarii (NTS) of the spontaneously hypertensive rat may be proâ€hypertensive. FASEB Journal, 2006, 20, .	0.5	0
247	A proteomic approach to investigate the changes within the rat hypothalamoâ€neurohypophyseal system induced by dehydration. FASEB Journal, 2006, 20, A354.	0.5	0
248	Spatiotemporal patterns of ventral medullary respiratory network activity during eupnea and gasping imaged using optical recording <i>in situ</i> . FASEB Journal, 2006, 20, A369.	0.5	0
249	Microarray analysis of brainstem micro vessels in an animal model genetically predisposed to hypertension. FASEB Journal, 2007, 21, A1411.	0.5	0
250	Involvement of ATP and Lâ€glutamate in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural NTS in the working heartâ€brainstem preparation (WHBP) of rat FASEB Journal, 2007, 21, A467.	0.5	0
251	Gestational administration of glucocorticoid alters baroreceptor and chemoreceptor reflexes in rat. FASEB Journal, 2008, 22, 738.17.	0.5	0
252	Role of phosphoinositideâ€3â€kinase (PI3K) in the nucleus of the solitary tract (NTS) in the modulation of baroreceptor reflex function in the hypertensive rat. FASEB Journal, 2008, 22, 737.34.	0.5	0

JULIAN F R PATON

#	Article	IF	CITATIONS
253	Proâ€hypertensive role for leukotriene B4 receptors in the spontaneously hypertensive rat. FASEB Journal, 2008, 22, 968.6.	0.5	0
254	Developing an MRI based method for analyzing differences in blood vessel diameter and brain tissue perfusion in hypertension. FASEB Journal, 2008, 22, 1210.21.	0.5	0
255	Increased sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) is coupled to enhanced late expiratory activity. FASEB Journal, 2008, 22, 739.1.	0.5	0
256	Proteomic analysis of brainstem micro vessels in angiotensin II induced hypertension. FASEB Journal, 2008, 22, 968.1.	0.5	0
257	Thinking outside the BötC (Bötzinger complex): possible brainstem origins of abdominal (AB) expiratory activity in the rat in situ. FASEB Journal, 2008, 22, 755.18.	0.5	0
258	Hypotensive action of adrenomedullin (ADM) receptor blockade in the rostral ventrolateral medulla of spontaneously hypertensive rats. FASEB Journal, 2009, 23, 1008.9.	0.5	0
259	Cellular substrates for angiotensin1â€7 (Ang1â€7) action in the rostral ventroâ€lateral medulla (RVLM) of the normotentsive and spontaneously hypertensive rat (SHR). FASEB Journal, 2009, 23, 958.3.	0.5	0
260	Hypercapnia engages parafacial respiratory group (pFRG) neuronal activity coincident with late expiratory motor outflow. FASEB Journal, 2009, 23, 621.13.	0.5	0
261	Dehydration switches emphasis from hypothalamus to medulla oblongata for maintenance of sympathetic nerve activity (SNA). FASEB Journal, 2009, 23, 959.7.	0.5	0
262	Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in conscious rats. FASEB Journal, 2009, 23, 1017.16.	0.5	0
263	Autonomic cardiovascular responses to chronic infusions of angiotensin II (ANGII) in wistar kyoto rats (WKY). FASEB Journal, 2009, 23, 1017.13.	0.5	0
264	Mechanisms underpinning the hypertension in juvenile rats submitted to chronic intermittent hypoxia. FASEB Journal, 2009, 23, 1008.5.	0.5	0
265	Hyperosmotic evoked sympathoexcitation is blocked by overexpression of macrophage inhibitory migration factor (MIF) in the paraventricular nucleus of hypothalamus (PVN). FASEB Journal, 2009, 23, 792.11.	0.5	0
266	Acute long term stimulation of the ventral periaqueductal grey (vPAG) evokes persistent hypotensive responses in spontaneously hypertensive (SH) rats. FASEB Journal, 2010, 24, 786.19.	0.5	0
267	Elevated sympathetic activity precedes the arterial hypertension in the Goldblatt model. FASEB Journal, 2010, 24, 982.4.	0.5	0
268	GABAâ€containing neurones in nucleus tractus solitarii chronically suppress baroreflex gain in normotensive but not hypertensive rats. FASEB Journal, 2010, 24, 780.2.	0.5	0
269	Respiratoryâ€Sympathetic Interactions and Central Baroreflex Pathways: Insights from Computational Modeling. FASEB Journal, 2011, 25, 1076.1	0.5	0
270	Chronic knockdown of nNOS in the paraventricular nucleus (PVN) produces persistent increases in arterial pressure and renal sympathetic nerve activity (RSNA) in the rat. FASEB Journal, 2011, 25, 1078.8.	0.5	0

#	Article	IF	CITATIONS
271	Modeling the effect of changes in central respiratoryâ€sympathetic coupling on the sympathetic nerve activity after chronic intermittent hypoxia. FASEB Journal, 2011, 25, 1076.6.	0.5	0
272	Depressed serotonin (5â€HT) contributes to suppressed CO 2 chemosensitivity in MeCP2 deficient mice. FASEB Journal, 2012, 26, 894.6.	0.5	0
273	Adaptive Single Neuron Hypertensive Gene Expression Programs in the Nucleus Tractus Solitarius. FASEB Journal, 2012, 26, 1035.19.	0.5	0
274	A theoretical study of the physiological significance of respiratory sinus arrhythmia. FASEB Journal, 2012, 26, 702.5.	0.5	0
275	Cerebral artery resistance is directly related to sympathetic nerve activity in men. FASEB Journal, 2013, 27, 697.10.	0.5	0
276	Carotid body denervation (CBD) stunts development of Goldblatt 2 kidneyâ€1 clip (2Kâ€1C) hypertension in adult rats. FASEB Journal, 2013, 27, 1108.7.	0.5	0
277	Effects of antiâ€hypertensive interventions on the inflammatory response in the spontaneously hypertensive rat. FASEB Journal, 2013, 27, 905.8.	0.5	0
278	Influence of age on respiratory modulation of muscle sympathetic nerve activity and blood pressure in humans. FASEB Journal, 2013, 27, 1118.23.	0.5	0
279	Interactions between carotid body denervation and renal nerve denervation in lowering arterial blood pressure in the adult spontaneously hypertensive rat (SHR). FASEB Journal, 2013, 27, 699.13.	0.5	0
280	The balance between neural and hemodynamic factors is abolished in hypertensive men. FASEB Journal, 2013, 27, 1108.5.	0.5	0
281	Central neural mechanisms underpinning amplified respiratoryâ€sympathetic coupling in the spontaneously hypertensive rat FASEB Journal, 2013, 27, 927.12.	0.5	0
282	Deviceâ€guided slow deep breathing in essential hypertension: is cardiac or sympathetic baroreflex sensitivity altered? (1132.7). FASEB Journal, 2014, 28, 1132.7.	0.5	0
283	Rheumatoid arthritis and autonomic function (1132.10). FASEB Journal, 2014, 28, 1132.10.	0.5	0
284	Increased memory and decreased naÃ⁻ve T cells in human hypertension (1074.9). FASEB Journal, 2014, 28, 1074.9.	0.5	0
285	Effect of device guided slow deep breathing on central sympathetic outflow and arterial baroreflex sensitivity in young healthy individuals (1170.4). FASEB Journal, 2014, 28, 1170.4.	0.5	0
286	Vertebrobasilar Remodeling In Hypertension: Cause or Consequence. FASEB Journal, 2015, 29, 832.11.	0.5	0
287	P2X3 Receptor Antagonism Reduces Peripheral Chemoreceptor Reflex Hypersensitivity and Blood Pressure in the Spontaneously Hypertensive Rat. FASEB Journal, 2015, 29, 1060.1.	0.5	0
288	Telemetric Recording of Renal and Carotid Blood Flow Velocity and Arterial Blood Pressure Simultaneously in Rats. FASEB Journal, 2015, 29, 960.3.	0.5	0

#	Article	IF	CITATIONS
289	Desensitization of mu opioid receptors on Köllikerâ€Fuse neurons. FASEB Journal, 2015, 29, 1032.4.	0.5	0
290	The Efficacy of Electrical Baroreflex Activation Therapy is Independent of Peripheral Chemoreceptor Modulation. FASEB Journal, 2018, 32, 884.6.	0.5	0
291	Lowerâ€limb venous function in hypoxia and hyperoxia: effect of healthy ageing. FASEB Journal, 2022, 36,	0.5	0
292	Cerebrovascular Carbon Dioxide Reactivity with Hyperoxia and Hypoxia in Humans with Treated Hypertension. FASEB Journal, 2022, 36, .	0.5	0
293	Intra-carotid body inter-cellular communication. Journal of the Royal Society of New Zealand, 2023, 53, 332-361.	1.9	0