
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1153799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in mRNA-based drug discovery in cancer immunotherapy. Expert Opinion on Drug Discovery, 2022, 17, 41-53.	5.0	17
2	Recombinant porphobilinogen deaminase targeted to the liver corrects enzymopenia in a mouse model of acute intermittent porphyria. Science Translational Medicine, 2022, 14, eabc0700.	12.4	9
3	Comprehensive molecular characterization of muscle-invasive bladder cancer (MIBC) treated with durvalumab plus olaparib in the neoadjuvant setting: Neodurvarib trial Journal of Clinical Oncology, 2022, 40, 546-546.	1.6	3
4	Novel strategies exploiting interleukin-12 in cancer immunotherapy. , 2022, 239, 108189.		35
5	Revisiting Intracavitary Immunotherapy of Cancer. Clinical Cancer Research, 2022, 28, 1993-1995.	7.0	Ο
6	Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. International Review of Cell and Molecular Biology, 2022, , .	3.2	5
7	Overcoming the limitations of cytokines to improve cancer therapy. International Review of Cell and Molecular Biology, 2022, , 107-141.	3.2	7
8	A human IgE bispecific antibody shows potent cytotoxic capacity mediated by monocytes. Journal of Biological Chemistry, 2022, 298, 102153.	3.4	1
9	Charting roadmaps towards novel and safe synergistic immunotherapy combinations. Nature Cancer, 2022, 3, 665-680.	13.2	18
10	A Therapeutically Actionable Protumoral Axis of Cytokines Involving IL-8, TNFα, and IL-1β. Cancer Discovery, 2022, 12, 2140-2157.	9.4	16
11	Synergistic antitumor response with recombinant modified virus Ankara armed with CD40L and CD137L against peritoneal carcinomatosis. Oncolmmunology, 2022, 11, .	4.6	3
12	Modulation of intratumoural myeloid cells, the hallmark of the anti-tumour efficacy induced by a triple combination: tumour-associated peptide, TLR-3 ligand and α-PD-1. British Journal of Cancer, 2021, 124, 1275-1285.	6.4	5
13	Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. , 2021, 9, e001586.		12
14	Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications. Cancers, 2021, 13, 963.	3.7	12
15	High Prevalence of Insulin Resistance in Asymptomatic Patients with Acute Intermittent Porphyria and Liver-Targeted Insulin as a Novel Therapeutic Approach. Biomedicines, 2021, 9, 255.	3.2	14
16	Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. Journal of Nanobiotechnology, 2021, 19, 102.	9.1	27
17	Differential Interleukinâ€8 thresholds for chemotaxis and netosis in human neutrophils. European Journal of Immunology, 2021, 51, 2274-2280.	2.9	32
18	Abstract 1691: CD137 (4-1BB) costimulation of CD8 T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. , 2021, , .		0

#	Article	IF	CITATIONS
19	Statins act as transient type I interferon inhibitors to enable the antitumor activity of modified vaccinia Ankara viral vectors. , 2021, 9, e001587.		10
20	CD137 Costimulation Counteracts TGFÎ ² Inhibition of NK-cell Antitumor Function. Cancer Immunology Research, 2021, 9, 1476-1490.	3.4	15
21	Anti-TGFβ (Transforming Growth Factor β) Therapy With Betaglycan-Derived P144 Peptide Gene Delivery Prevents the Formation of Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e440-e452.	2.4	12
22	Firefighters for the Wrong Type of Inflammation in Tumors. Cancer Discovery, 2021, 11, 2372-2374.	9.4	3
23	IL8, Neutrophils, and NETs in a Collusion against Cancer Immunity and Immunotherapy. Clinical Cancer Research, 2021, 27, 2383-2393.	7.0	108
24	Generation and characterization of novel co-stimulatory anti-mouse TNFR2 antibodies. Journal of Immunological Methods, 2021, 499, 113173.	1.4	1
25	Semi-Mechanistic Model for the Antitumor Response of a Combination Cocktail of Immuno-Modulators in Non-Inflamed (Cold) Tumors. Cancers, 2021, 13, 5049.	3.7	2
26	Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. , 2021, 9, e002953.		23
27	CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nature Communications, 2021, 12, 7296.	12.8	22
28	Production and use of adeno-associated virus vectors as tools for cancer immunotherapy. Methods in Enzymology, 2020, 635, 185-203.	1.0	3
29	Repurposing the yellow fever vaccine for intratumoral immunotherapy. EMBO Molecular Medicine, 2020, 12, e10375.	6.9	28
30	Interleukin-12 Message in a Bottle. Clinical Cancer Research, 2020, 26, 6080-6082.	7.0	8
31	Immunotherapy Moves to the Early-Stage Setting in Non-Small Cell Lung Cancer: Emerging Evidence and the Role of Biomarkers. Cancers, 2020, 12, 3459.	3.7	11
32	761P Impact of the combination of durvalumab (MEDI4736) plus olaparib (AZD2281) administered prior to surgery in the molecular profile of resectable urothelial bladder cancer. NEODURVARIB trial. Annals of Oncology, 2020, 31, S589.	1.2	11
33	1069P A multicenter phase II study of nivolumab combined with ipilimumab in patients with pediatric solid tumours in adulthood (GETHI021). Annals of Oncology, 2020, 31, S727.	1.2	1
34	Indirect Impact of PD-1/PD-L1 Blockade on a Murine Model of NK Cell Exhaustion. Frontiers in Immunology, 2020, 11, 7.	4.8	29
35	Scavenger Receptor Class B Type I is Required for 25â€Hydroxycholecalciferol Cellular Uptake and Signaling in Myeloid Cells. Molecular Nutrition and Food Research, 2020, 64, e1901213.	3.3	1
36	Premortem Tumor Stress in Radioimmunotherapy. Trends in Cancer, 2020, 6, 173-174.	7.4	1

#	Article	IF	CITATIONS
37	Rapid isolation and enrichment of mouse NK cells for experimental purposes. Methods in Enzymology, 2020, 631, 257-275.	1.0	4
38	CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity, 2020, 52, 856-871.e8.	14.3	387
39	Cellular cytotoxicity is a form of immunogenic cell death. , 2020, 8, e000325.		61
40	Human CD8 T cells are susceptible to TNF-mediated activation-induced cell death. Theranostics, 2020, 10, 4481-4489.	10.0	24
41	Insulin Fused to Apolipoprotein A-I Reduces Body Weight and Steatosis in DB/DB Mice. Frontiers in Pharmacology, 2020, 11, 591293.	3.5	4
42	Long-Term Liver Expression of an Apolipoprotein A-I Mimetic Peptide Attenuates Interferon-Alpha-Induced Inflammation and Promotes Antiviral Activity. Frontiers in Immunology, 2020, 11, 620283.	4.8	2
43	Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cellular and Molecular Immunology, 2020, 17, 576-586.	10.5	12
44	Impact of the combination of durvalumab (MEDI4736) plus olaparib (AZD2281) administered prior to surgery in the molecular profile of resectable urothelial bladder cancer: NEODURVARIB Trial Journal of Clinical Oncology, 2020, 38, 542-542.	1.6	30
45	Abstract 1698: Cellular cytotoxicity is a form of immunogenic cell death. Cancer Research, 2020, 80, 1698-1698.	0.9	1
46	4-1BB (CD137) in anticancer chimeras. Journal of Experimental Medicine, 2020, 217, .	8.5	1
47	Immune Desertic Landscapes in Hepatocellular Carcinoma Shaped by β-Catenin Activation. Cancer Discovery, 2019, 9, 1003-1005.	9.4	23
48	TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies. Molecular Cancer Therapeutics, 2019, 18, 621-631.	4.1	68
49	Treatment of Experimental Autoimmune Encephalomyelitis by Sustained Delivery of Low-Dose IFN-α. Journal of Immunology, 2019, 203, 696-704.	0.8	6
50	Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocyte-deficient mice reconstituted with human NK cells. OncoImmunology, 2019, 8, e1599636.	4.6	20
51	Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature, 2019, 569, 428-432.	27.8	313
52	Messenger RNA therapy for rare genetic metabolic diseases. Gut, 2019, 68, 1323-1330.	12.1	76
53	Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nature Medicine, 2019, 25, 470-476.	30.7	459
54	Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8+ T Cells. Cancer Cell, 2019, 36, 613-629.e7.	16.8	99

#	Article	IF	CITATIONS
55	Mechanisms of action for different checkpoint inhibitors. HemaSphere, 2019, 3, 28-30.	2.7	8
56	Cytokines in clinical cancer immunotherapy. British Journal of Cancer, 2019, 120, 6-15.	6.4	720
57	A new immune-nanoplatform for promoting adaptive antitumor immune response. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 13-25.	3.3	17
58	Interim analysis of a phase II study of nivolumab combined with ipilimumab in patients with pediatric solid tumors in adulthood (GETHI021) Journal of Clinical Oncology, 2019, 37, 2613-2613.	1.6	2
59	Impact of prophylactic TNF blockade in the dual PD-1 and CTLA-4 immunotherapy efficacy and toxicity. Cell Stress, 2019, 3, 236-239.	3.2	17
60	Abstract 1474: Repurposing the yellow fever vaccine for intratumoral immunotherapy. , 2019, , .		0
61	Abstract 2331: Intratumor adoptive transfer of IL-12 mRNA transiently engineered anti-tumor CD8+ T cells. , 2019, , .		0
62	Abstract 1474: Repurposing the yellow fever vaccine for intratumoral immunotherapy. , 2019, , .		0
63	Abstract 2331: Intratumor adoptive transfer of IL-12 mRNA transiently engineered anti-tumor CD8+ T cells. , 2019, , .		Ο
64	Efficacy of systemic messenger RNA therapy to treat and prevent porphyria attacks in animal models of acute intermittent porphyria. Molecular Genetics and Metabolism, 2018, 123, S70-S71.	1.1	0
65	Revisiting Interleukin-12 as a Cancer Immunotherapy Agent. Clinical Cancer Research, 2018, 24, 2716-2718.	7.0	69
66	Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Annals of Oncology, 2018, 29, 1312-1319.	1.2	106
67	Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1326-1334.	3.8	34
68	An Inducible Promoter Responsive to Different Porphyrinogenic Stimuli Improves Gene Therapy Vectors for Acute Intermittent Porphyria. Human Gene Therapy, 2018, 29, 480-491.	2.7	14
69	Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15. Oncolmmunology, 2018, 7, e1393597.	4.6	20
70	Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nature Medicine, 2018, 24, 1899-1909.	30.7	125
71	Intratumoral Immunotherapy with XCL1 and sFlt3L Encoded in Recombinant Semliki Forest Virus–Derived Vectors Fosters Dendritic Cell–Mediated T-cell Cross-Priming. Cancer Research, 2018, 78, 6643-6654.	0.9	60
72	International Symposium: Trailblazing in Cancer Immunotherapy, October 29–31, 2017, Pamplona, Spain. Cancer Immunology, Immunotherapy, 2018, 67, 1809-1813.	4.2	0

#	Article	IF	CITATIONS
73	An RNA toolbox for cancer immunotherapy. Nature Reviews Drug Discovery, 2018, 17, 751-767.	46.4	171
74	Epistatic Oncogenic Interactions Determine Cancer Susceptibility to Immunotherapy. Cancer Discovery, 2018, 8, 794-796.	9.4	6
75	Bioengineered PBCD variant improves the therapeutic index of gene therapy vectors for acute intermittent porphyria. Human Molecular Genetics, 2018, 27, 3688-3696.	2.9	14
76	A multicenter phase 2 study of nivolumab combined with ipilimumab in patients with pediatric solid tumors in adulthood (GETHI021) Journal of Clinical Oncology, 2018, 36, TPS3123-TPS3123.	1.6	0
77	Abstract LB-151: Prophylactic TNFα blockade unplugs toxicity and efficacy in immunotherapy anti-PD-1 + anti-CTLA-4 combinations. , 2018, , .		0
78	Antibodyâ€dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunology and Cell Biology, 2017, 95, 347-355.	2.3	160
79	Targeting NK-cell checkpoints for cancer immunotherapy. Current Opinion in Immunology, 2017, 45, 73-81.	5.5	158
80	Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut, 2017, 66, 1818-1828.	12.1	118
81	Exploiting scavenger receptors in cancer immunotherapy: Lessons from CD5 and SRâ€B1. European Journal of Immunology, 2017, 47, 1108-1118.	2.9	23
82	Cellular immunotherapies for cancer. OncoImmunology, 2017, 6, e1306619.	4.6	17
83	Commentary on Pharmacometrics for Immunotherapy. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 8-10.	2.5	4
84	Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death and Disease, 2017, 8, e3083-e3083.	6.3	17
85	Antitumor effect of an adeno-associated virus expressing apolipoprotein A-1 fused to interferon alpha in an interferon alpha-resistant murine tumor model. Oncotarget, 2017, 8, 5247-5255.	1.8	10
86	New trends in antitumor vaccines in melanoma. Annals of Translational Medicine, 2017, 5, 384-384.	1.7	16
87	Immunological Landscape and Clinical Management of Rectal Cancer. Frontiers in Immunology, 2016, 7, 61.	4.8	14
88	Making the Most of Cancer Surgery with Neoadjuvant Immunotherapy. Cancer Discovery, 2016, 6, 1312-1314.	9.4	41
89	Emerging therapies for acute intermittent porphyria. Expert Reviews in Molecular Medicine, 2016, 18, e17.	3.9	32
90	Immunostimulatory Monoclonal Antibodies and Immunomodulation: Harvesting the Crop. Cancer Research, 2016, 76, 2863-2867.	0.9	4

#	Article	IF	CITATIONS
91	Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function. Oncolmmunology, 2016, 5, e1196309.	4.6	10
92	Development of a New Hepatoprotective and Proregenerative Molecule Based on Fibroblast Growth Factor 15/19. Journal of Hepatology, 2016, 64, S184.	3.7	2
93	Innate immune mediators in cancer: between defense and resistance. Immunological Reviews, 2016, 274, 290-306.	6.0	104
94	Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. Oncolmmunology, 2016, 5, e1062967.	4.6	52
95	Cancer Immunosurveillance Caught in the Act. Immunity, 2016, 44, 525-526.	14.3	6
96	Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clinical Cancer Research, 2016, 22, 3924-3936.	7.0	306
97	Correlation between anti-PD-L1 tumor concentrations and tumor-specific and nonspecific biomarkers in a melanoma mouse model. Oncotarget, 2016, 7, 76891-76901.	1.8	9
98	Chronic exposure to IFNÂ drives medullar lymphopoiesis towards T cell differentiation in mice. Haematologica, 2015, 100, 1014-22.	3.5	8
99	Liver-directed gene therapy of chronic hepadnavirus infection using interferon alpha tethered to apolipoprotein A-I. Journal of Hepatology, 2015, 63, 329-336.	3.7	21
100	Overexpression of apolipoprotein A-I fused to an anti-transforming growth factor beta peptide modulates the tumorigenicity and immunogenicity of mouse colon cancer cells. Cancer Immunology, Immunotherapy, 2015, 64, 717-725.	4.2	6
101	Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases. PLoS ONE, 2014, 9, e96799.	2.5	12
102	Myeloid-derived cells are key targets of tumor immunotherapy. Oncolmmunology, 2014, 3, e28398.	4.6	47
103	Intravenous Immunoglobulin Promotes Antitumor Responses by Modulating Macrophage Polarization. Journal of Immunology, 2014, 193, 5181-5189.	0.8	39
104	Mathematical Model Approach to Describe Tumour Response in Mice After Vaccine Administration and its Applicability to Immune-Stimulatory Cytokine-Based Strategies. AAPS Journal, 2013, 15, 797-807.	4.4	24
105	Target-Mediated Disposition Model Describing the Dynamics of IL12 and IFNÎ ³ after Administration of a Mifepristone-Inducible Adenoviral Vector for IL-12 Expression in Mice. AAPS Journal, 2013, 15, 183-194.	4.4	4
106	Antitumor Immunotherapeutic and Toxic Properties of an HDL-Conjugated Chimeric IL-15 Fusion Protein. Cancer Research, 2013, 73, 139-149.	0.9	44
107	Cytokines for the treatment of gastrointestinal cancers: clinical experience and new perspectives. Expert Opinion on Investigational Drugs, 2013, 22, 827-841.	4.1	5
108	Modeling Tumor Response after Combined Administration of Different Immune-Stimulatory Agents. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 432-442.	2.5	19

#	Article	IF	CITATIONS
109	High-density lipoproteins delivering interleukin-15. Oncolmmunology, 2013, 2, e23410.	4.6	3
110	Eradication of Liver-Implanted Tumors by Semliki Forest Virus Expressing IL-12 Requires Efficient Long-Term Immune Responses. Journal of Immunology, 2013, 190, 2994-3004.	0.8	21
111	Interleukin-15 in Gene Therapy of Cancer. Current Gene Therapy, 2013, 13, 15-30.	2.0	37
112	Abstract 1223: Antitumor immunotherapeutic and toxic properties of an HDL-conjugated chimeric IL-15 fusion protein , 2013, , .		0
113	How can chemoimmunotherapy best be used for the treatment of colon cancer?. Immunotherapy, 2012, 4, 1787-1790.	2.0	3
114	Colon cancer eradication after chemoimmunotherapy is associated with intratumoral emergence of proinflammatory myeloid cells. Oncolmmunology, 2012, 1, 118-120.	4.6	6
115	Immunochemotherapy against colon cancer by gene transfer of interleukin-12 in combination with oxaliplatin. Oncolmmunology, 2012, 1, 97-99.	4.6	10
116	A Semliki Forest virus vector engineered to express IFNα induces efficient elimination of established tumors. Gene Therapy, 2012, 19, 271-278.	4.5	19
117	The Fusion Protein of IFN-α and Apolipoprotein A-I Crosses the Blood–Brain Barrier by a Saturable Transport Mechanism. Journal of Immunology, 2012, 188, 3988-3992.	0.8	16
118	Eradication of large tumors expressing human papillomavirus E7 protein by therapeutic vaccination with E7 fused to the extra domain a from fibronectin. International Journal of Cancer, 2012, 131, 641-651.	5.1	34
119	Kinetic and Dynamic Computational Model-Based Characterization of New Proteins in Mice: Application to Interferon Alpha Linked to Apolipoprotein A-I. PLoS ONE, 2012, 7, e42100.	2.5	2
120	Liver Gene Transfer of Interkeukin-15 Constructs That Become Part of Circulating High Density Lipoproteins for Immunotherapy. PLoS ONE, 2012, 7, e52370.	2.5	16
121	Interleukin-15 in Gene Therapy of Cancer. Current Gene Therapy, 2012, 13, 15-30.	2.0	0
122	CS18-5. Bounding interferon alpha to apolipoprotein a-i: A strategy to reduce hematological toxicity while enhancing immunostimulatory properties. Cytokine, 2011, 56, 110.	3.2	0
123	Characterization of woodchuck apolipoprotein Aâ€k A new tool for drug delivery and identification of altered isoforms in the woodchuck chronic hepatitis model. Journal of Medical Virology, 2011, 83, 1221-1229.	5.0	5
124	Anchoring interferon alpha to apolipoprotein Aâ€I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology, 2011, 53, 1864-1873.	7.3	38
125	Intratumoral injection of interferonâ€Î± and systemic delivery of agonist antiâ€CD137 monoclonal antibodies synergize for immunotherapy. International Journal of Cancer, 2011, 128, 105-118.	5.1	39
126	Development of a Liver-specific Tet-On Inducible System for AAV Vectors and Its Application in the Treatment of Liver Cancer. Molecular Therapy, 2011, 19, 1245-1253.	8.2	51

#	Article	IF	CITATIONS
127	Successful Colon Cancer Eradication after Chemoimmunotherapy Is Associated with Profound Phenotypic Change of Intratumoral Myeloid Cells. Journal of Immunology, 2011, 186, 807-815.	0.8	92
128	Scavenger receptor class B, type I: a promising immunotherapy target. Immunotherapy, 2011, 3, 395-406.	2.0	14
129	Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut, 2011, 60, 341-349.	12.1	87
130	Gene Therapy: A Pharmacokinetic/Pharmacodynamic Modelling Overview. Pharmaceutical Research, 2010, 27, 1487-1497.	3.5	40
131	Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Therapy, 2010, 17, 20-27.	4.6	23
132	Treatment of Chronic Viral Hepatitis in Woodchucks by Prolonged Intrahepatic Expression of Interleukin-12. Journal of Virology, 2009, 83, 2663-2674.	3.4	34
133	Production of Recombinant Woodchuck IFNα and Development of Monoclonal Antibodies. Journal of Interferon and Cytokine Research, 2009, 29, 75-82.	1.2	1
134	Clinical development of combination strategies in immunotherapy: are we ready for more than one investigational product in an early clinical trial?. Immunotherapy, 2009, 1, 845-853.	2.0	17
135	Semi-mechanistic pharmacodynamic modelling of gene expression and silencing processes. European Journal of Pharmaceutical Sciences, 2009, 37, 418-426.	4.0	14
136	Peptide inhibitors of transforming growth factorâ€Î² enhance the efficacy of antitumor immunotherapy. International Journal of Cancer, 2009, 125, 2614-2623.	5.1	62
137	<i>In vivo</i> depletion of DC impairs the antiâ€ŧumor effect of agonistic antiâ€CD137 mAb. European Journal of Immunology, 2009, 39, 2424-2436.	2.9	47
138	Effect of Adeno-Associated Virus Serotype and Genomic Structure on Liver Transduction and Biodistribution in Mice of Both Genders. Human Gene Therapy, 2009, 20, 908-917.	2.7	88
139	Advances in Interleukin-12 Gene Therapy for Acquired Liver Diseases. Current Gene Therapy, 2009, 9, 62-71.	2.0	19
140	Characterization of highâ€capacity adenovirus production by the quantitative realâ€time polymerase chain reaction: a comparative study of different titration methods. Journal of Gene Medicine, 2008, 10, 1092-1101.	2.8	11
141	Eradication of Large Tumors in Mice by a Tritherapy Targeting the Innate, Adaptive, and Regulatory Components of the Immune System. Cancer Research, 2007, 67, 8847-8855.	0.9	103
142	Induction of immunosuppressive molecules and regulatory T cells counteracts the antitumor effect of interleukin-12-based gene therapy in a transgenic mouse model of liver cancer. Journal of Hepatology, 2007, 47, 807-815.	3.7	69
143	Woodchuck dendritic cells generated from peripheral blood mononuclear cells and transduced with recombinant human adenovirus serotype 5 induce antigen-specific cellular immune responses. Journal of Medical Virology, 2007, 79, 522-529.	5.0	5
144	Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice. Hepatology, 2006, 44, 623-632.	7.3	31

#	Article	IF	CITATIONS
145	Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma. Cancer Research, 2006, 66, 2442-2450.	0.9	129
146	Intrahepatic Injection of Recombinant Adeno-Associated Virus Serotype 2 Overcomes Gender-Related Differences in Liver Transduction. Human Gene Therapy, 2006, 17, 601-610.	2.7	26
147	Intrahepatic Injection of Recombinant Adeno-Associated Virus Serotype 2 Overcomes Gender-Related Differences in Liver Transduction. Human Gene Therapy, 2006, .	2.7	0
148	IFN-α gene therapy for woodchuck hepatitis with adeno-associated virus: differences in duration of gene expression and antiviral activity using intraportal or intramuscular routes. Molecular Therapy, 2005, 12, 68-76.	8.2	31
149	Induction of gp120-specific protective immune responses by genetic vaccination with linear polyethylenimine–plasmid complex. Vaccine, 2005, 23, 1384-1392.	3.8	39
150	319. Improvement of Transgene Expression through the Direct Intrahepatic Injection of Adenoviral Vectors. Molecular Therapy, 2004, 9, S121.	8.2	0
151	350 Gene therapy for chronic hepatitis in the woodchuck model using recombinant adeno-associated virus expressing interferon alpha. Journal of Hepatology, 2004, 40, 106.	3.7	0
152	In vitro and in vivo comparative study of chimeric liver-specific promoters. Molecular Therapy, 2003, 7, 375-385.	8.2	97
153	The woodchuck interferon alpha system: cloning, family description and biologic activity. Journal of Hepatology, 2002, 36, 180-181.	3.7	0
154	The woodchuck interferon- $\hat{l}\pm$ system: Cloning, family description, and biologic activity. Journal of Medical Virology, 2002, 68, 424-432.	5.0	11
155	Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Experimental Hematology, 2002, 30, 195-204.	0.4	25
156	Protection against Woodchuck Hepatitis Virus (WHV) Infection by Gene Gun Coimmunization with WHV Core and Interleukin-12. Journal of Virology, 2001, 75, 9068-9076.	3.4	32