
Ruth Stavy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11532440/publications.pdf Version: 2024-02-01

Ρυτή Stavy

#	Article	IF	CITATIONS
1	Intuitive Interference inÂGeometry: An Eyeâ€Tracking Study. Mind, Brain, and Education, 2020, 14, 155-166.	1.9	4
2	Interventions aimed at overcoming intuitive interference: insights from brain-imaging and behavioral studies. Cognitive Processing, 2019, 20, 1-9.	1.4	5
3	Proportional reasoning: Reducing the interference of natural numbers through an intervention based on the problem-solving framework of executive functions. Neuroeducation, 2018, 5, 109-118.	0.3	1
4	Comparison of perimeters: improving students' performance by increasing the salience of the relevant variable. ZDM - International Journal on Mathematics Education, 2016, 48, 367-378.	2.2	22
5	Proportional Reasoning. Zeitschrift Fur Psychologie / Journal of Psychology, 2016, 224, 266-276.	1.0	5
6	Discrete and Continuous Presentation of Quantities in Science and Mathematics Education. , 2016, , 289-303.		0
7	A warning intervention improves students' ability to overcome intuitive interference. ZDM - International Journal on Mathematics Education, 2015, 47, 735-745.	2.2	28
8	Involvement of inhibitory control mechanisms in overcoming intuitive interference. Neuroeducation, 2014, 3, 1-9.	0.3	4
9	PREACTIVATION OF INHIBITORY CONTROL MECHANISMS HINDERS INTUITIVE REASONING. International Journal of Science and Mathematics Education, 2012, 10, 763-775.	2.5	26
10	THE EFFECT OF INTERVENTION ON ACCURACY OF STUDENTS' RESPONSES AND REACTION TIMES TO GEOMETRY PROBLEMS. International Journal of Science and Mathematics Education, 2010, 8, 185-201.	2.5	15
11	Overcoming intuitive interference in mathematics: insights from behavioral, brain imaging and intervention studies. ZDM - International Journal on Mathematics Education, 2010, 42, 621-633.	2.2	40
12	Persistence of the Intuitive Conception of Living Things in Adolescence. Journal of Science Education and Technology, 2010, 19, 20-26.	3.9	48
13	Using a Computer Animation to Teach High School Molecular Biology. Journal of Science Education and Technology, 2008, 17, 49-58.	3.9	49
14	Using computer animation and illustration activities to improve high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 2008, 45, 273-292.	3.3	101
15	Complexity of Shapes and Quantitative Reasoning in Geometry. Mind, Brain, and Education, 2008, 2, 170-176.	1.9	25
16	Effect of bead and illustrations models on high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 2006, 43, 500-529.	3.3	60
17	Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning. Psychonomic Bulletin and Review, 2006, 13, 935-953.	2.8	47
18	Are Intuitive Rules Universal?. International Journal of Science and Mathematics Education, 2006, 4, 417-436.	2.5	25

RUTH STAVY

#	Article	IF	CITATIONS
19	Intuitive Interference in Probabilistic Reasoning. International Journal of Science and Mathematics Education, 2006, 4, 627-639.	2.5	35
20	Intuitive interference in quantitative reasoning. Brain Research, 2006, 1073-1074, 383-388.	2.2	36
21	Understanding molecular genetics through a drawing-based activity. Journal of Biological Education, 2005, 39, 174-178.	1.5	15
22	Using the Intuitive Rules Theory as a Basis for Educating Teachers. , 2001, , 73-85.		4
23	Students' cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 2000, 34, 200-205.	1.5	173
24	Intuitive Rules and Comparison Tasks. Mathematical Thinking and Learning, 1999, 1, 179-194.	1.2	17
25	Intuitive rules: A way to explain and predict students' reasoning. Educational Studies in Mathematics, 1999, 38, 51-66.	2.8	58
26	Intuitive Rules: A way to Explain and Predict Students' Reasoning. , 1999, , 51-66.		15
27	Cognitive conflict and intuitive rules. International Journal of Science Education, 1998, 20, 1257-1269.	1.9	32
28	Teaching science by inquiry: assessment and learning. Journal of Biological Education, 1998, 33, 27-32.	1.5	27
29	Is it possible to confine the application of the intuitive rule: â€~Subdivision processes can always be repeated'?. International Journal of Mathematical Education in Science and Technology, 1998, 29, 813-825.	1.4	5
30	Intuitive rules in science and mathematics: the case of â€~more of A â€â€•more of B'. International Journal of Science Education, 1996, 18, 653-667.	1.9	85
31	The Role of Intuitive Rules in Science and Mathematics Education. European Journal of Teacher Education, 1996, 19, 109-119.	3.7	7
32	Intuitive rules in science and mathematics: the case of â€~Everything can be divided by two'. International Journal of Science Education, 1996, 18, 669-683.	1.9	28
33	Subdivision processes in mathematics and science. Journal of Research in Science Teaching, 1993, 30, 579-586.	3.3	6
34	When analogy is perceived as such. Journal of Research in Science Teaching, 1993, 30, 1229-1239.	3.3	23
35	How to make the learning of photosynthesis more relevant. International Journal of Science Education, 1993, 15, 117-125.	1.9	14
36	The development of biological knowledge: A multi-national study. Cognitive Development, 1993, 8, 47-62.	1.3	107

RUTH STAVY

#	Article	IF	CITATIONS
37	Overgeneralization in mathematics and science: the effect of external similarity. International Journal of Mathematical Education in Science and Technology, 1992, 23, 239-248.	1.4	6
38	Material Cycles in Nature. A New Approach to Teaching Photosynthesis in Junior High School. American Biology Teacher, 1992, 54, 339-342.	0.2	10
39	Students' Ability to Confine Their Application of Knowledge: The Case of Mathematics and Science. School Science and Mathematics, 1992, 92, 353-358.	0.9	6
40	Children's Ideas About Matter. School Science and Mathematics, 1991, 91, 240-244.	0.9	54
41	Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 1991, 28, 305-313.	3.3	110
42	Children's conception of changes in the state of matter: From liquid (or solid) to gas. Journal of Research in Science Teaching, 1990, 27, 247-266.	3.3	133
43	A microcomputerâ€based diagnostic system for identifying students' conception of heat and temperature. International Journal of Science Education, 1990, 12, 123-132.	1.9	10
44	Pupils' problems in understanding conservation of matter. International Journal of Science Education, 1990, 12, 501-512.	1.9	46
45	Children's Conceptions of Plants as Living Things. Human Development, 1989, 32, 88-94.	2.0	78
46	Children's conception of gas. International Journal of Science Education, 1988, 10, 553-560.	1.9	103
47	Students' Understanding of Photosynthesis. American Biology Teacher, 1988, 50, 208-212.	0.2	65
48	How students aged 13â€15 understand photosynthesis. International Journal of Science Education, 1987, 9, 105-115.	1.9	87
49	Children's ideas about â€~solid' and â€~liquid'. European Journal of Science Education, 1985, 7, 407-421.	1.1	41
50	U-Shaped Behavioral Growth in Ratio Comparisons. , 1982, , 11-36.		19
51	Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science	3.0	98