
George J Augustine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1153113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Layer Interneurons: Key Elements of Cerebellar Network Computation and Behavior. Neuroscience, 2021, 462, 22-35.	2.3	32
2	Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors?. Cells, 2021, 10, 658.	4.1	29
3	Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Frontiers in Neural Circuits, 2021, 15, 658228.	2.8	11
4	A neural circuit for excessive feeding driven by environmental context in mice. Nature Neuroscience, 2021, 24, 1132-1141.	14.8	21
5	Using Optogenetic Dyadic Animal Models to Elucidate the Neural Basis for Human Parent–Infant Social Knowledge Transmission. Frontiers in Neural Circuits, 2021, 15, 731691.	2.8	2
6	An automated data extraction and classification pipeline to identify a novel type of neuron within the dorsal striatum based on single-cell patch clamp and confocal imaging data. Data in Brief, 2020, 32, 106148.	1.0	0
7	Synaptic Connectivity between the Cortex and Claustrum Is Organized into Functional Modules. Current Biology, 2020, 30, 2777-2790.e4.	3.9	47
8	Neuroscience: A Role for the Claustrum in Drug Reward. Current Biology, 2020, 30, R1038-R1040.	3.9	3
9	Identification of Mouse Claustral Neuron Types Based on Their Intrinsic Electrical Properties. ENeuro, 2020, 7, ENEURO.0216-20.2020.	1.9	22
10	Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. ELife, 2020, 9, .	6.0	9
11	Structural basis for delta cell paracrine regulation in pancreatic islets. Nature Communications, 2019, 10, 3700.	12.8	80
12	Postsynaptic Mechanisms Render Syn I/II/III Mice Highly Responsive to Psychostimulants. International Journal of Neuropsychopharmacology, 2019, 22, 453-465.	2.1	6
13	A Novel Type of Neuron Within the Dorsal Striatum. Frontiers in Neural Circuits, 2019, 13, 32.	2.8	19
14	Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus. Cell Reports, 2018, 22, 2322-2333.	6.4	51
15	Molecular Mechanisms of Short-Term Plasticity: Role of Synapsin Phosphorylation in Augmentation and Potentiation of Spontaneous Glutamate Release. Frontiers in Synaptic Neuroscience, 2018, 10, 33.	2.5	21
16	Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum. Neuron, 2018, 99, 999-1015.e6.	8.1	74
17	Synapsins (SYN). , 2018, , 5274-5280.		0
18	Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent StemÂCells. Stem Cell Reports, 2017, 8, 619-633.	4.8	193

#	Article	IF	CITATIONS
19	Functional properties, topological organization and sexual dimorphism of claustrum neurons projecting to anterior cingulate cortex. Claustrum, 2017, 2, 1357412.	0.1	18
20	Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nature Communications, 2017, 8, 232.	12.8	44
21	Inhibitory Basal Ganglia Inputs Induce Excitatory Motor Signals in the Thalamus. Neuron, 2017, 95, 1181-1196.e8.	8.1	89
22	Defining a critical period for inhibitory circuits within the somatosensory cortex. Scientific Reports, 2017, 7, 7271.	3.3	19
23	Pancreatic Islet Blood Flow Dynamics in Primates. Cell Reports, 2017, 20, 1490-1501.	6.4	35
24	[P3–168]: GENETIC DISSECTION OF SEVERITY AND ONSET MODULATORS FOR ALZHEIMER's PATHOLOGY IN DOWN SYNDROME USING CELLULAR SYSTEMS. Alzheimer's and Dementia, 2017, 13, P998.	0.8	0
25	Calcium-Dependent and Synapsin-Dependent Pathways for the Presynaptic Actions of BDNF. Frontiers in Cellular Neuroscience, 2017, 11, 75.	3.7	18
26	Editorial: Imaging Synapse Structure and Function. Frontiers in Synaptic Neuroscience, 2016, 8, 36.	2.5	1
27	Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome. NeuroMolecular Medicine, 2016, 18, 364-377.	3.4	26
28	C1â€Scarless gene correction in huntington's disease patient-derived induced pluripotent stem cells. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A27.1-A27.	1.9	0
29	Roadmap on neurophotonics. Journal of Optics (United Kingdom), 2016, 18, 093007.	2.2	28
30	Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers. Journal of Neuroscience, 2016, 36, 5709-5723.	3.6	20
31	Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons. Journal of Neuroscience, 2016, 36, 6742-6757.	3.6	32
32	Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E358-67.	7.1	94
33	Drosophila Schip1 Links Expanded and Tao-1 to Regulate Hippo Signaling. Developmental Cell, 2016, 36, 511-524.	7.0	30
34	The cerebellum linearly encodes whisker position during voluntary movement. ELife, 2016, 5, e10509.	6.0	69
35	Synapsins (SYN). , 2016, , 1-7.		0
36	An Optogenetic Approach for Assessing Formation of Neuronal Connections in a Co-culture System. Journal of Visualized Experiments, 2015, , e52408.	0.3	15

#	Article	IF	CITATIONS
37	Synapsin Isoforms and Synaptic Vesicle Trafficking. Molecules and Cells, 2015, 38, 936-940.	2.6	70
38	An excitatory GABA loop operating in vivo. Frontiers in Cellular Neuroscience, 2015, 9, 275.	3.7	26
39	A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nature Neuroscience, 2015, 18, 379-385.	14.8	67
40	Protein tyrosine phosphatase receptor type R is required for Purkinje cell responsiveness in cerebellar long-term depression. Molecular Brain, 2015, 8, 1.	2.6	53
41	Rescue of Methyl-CpG Binding Protein 2 Dysfunction-induced Defects in Newborn Neurons by Pentobarbital. Neurotherapeutics, 2015, 12, 477-490.	4.4	17
42	All-optical mapping of barrel cortex circuits based on simultaneous voltage-sensitive dye imaging and channelrhodopsin-mediated photostimulation. Neurophotonics, 2015, 2, 021013.	3.3	5
43	STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Molecular Biology of the Cell, 2015, 26, 1141-1159.	2.1	51
44	Selective Loss of Presynaptic Potassium Channel Clusters at the Cerebellar Basket Cell Terminal Pinceau in Adam11 Mutants Reveals Their Role in Ephaptic Control of Purkinje Cell Firing. Journal of Neuroscience, 2015, 35, 11433-11444.	3.6	29
45	Non-invasive activation of optogenetic actuators. Proceedings of SPIE, 2014, 8928, .	0.8	15
46	Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learning and Memory, 2014, 21, 627-633.	1.3	48
47	Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity. Journal of Neuroscience, 2014, 34, 2321-2330.	3.6	214
48	Optogenetic Mapping of Cerebellar Inhibitory Circuitry Reveals Spatially Biased Coordination of Interneurons via Electrical Synapses. Cell Reports, 2014, 7, 1601-1613.	6.4	62
49	Presynaptic nanodomains: a tale of two synapses. Frontiers in Cellular Neuroscience, 2014, 8, 455.	3.7	55
50	Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization. Frontiers in Behavioral Neuroscience, 2014, 8, 336.	2.0	27
51	Visualization of Synaptic Inhibition with an Optogenetic Sensor Developed by Cell-Free Protein Engineering Automation. Journal of Neuroscience, 2013, 33, 16297-16309.	3.6	95
52	Next-generation transgenic mice for optogenetic analysis of neural circuits. Frontiers in Neural Circuits, 2013, 7, 160.	2.8	62
53	Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 2011, 8, 745-752.	19.0	605
54	Optogenetic probing of functional brain circuitry. Experimental Physiology, 2011, 96, 26-33.	2.0	54

#	Article	IF	CITATIONS
55	Imaging Synaptic Inhibition with the Genetically Encoded Chloride Indicator Clomeleon. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066985.	0.3	13
56	Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures. Journal of Neuroscience, 2010, 30, 11745-11761.	3.6	173
57	Synapsins Differentially Control Dopamine and Serotonin Release. Journal of Neuroscience, 2010, 30, 9762-9770.	3.6	100
58	Channel-Mediated Tonic GABA Release from Glia. Science, 2010, 330, 790-796.	12.6	470
59	Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures. Neuron, 2009, 63, 657-672.	8.1	133
60	Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon. Brain Cell Biology, 2008, 36, 101-118.	3.2	58
61	A Positive Feedback Signal Transduction Loop Determines Timing of Cerebellar Long-Term Depression. Neuron, 2008, 59, 608-620.	8.1	107
62	Synapsin IIa Controls the Reserve Pool of Glutamatergic Synaptic Vesicles. Journal of Neuroscience, 2008, 28, 10835-10843.	3.6	112
63	Ca2+ Requirements for Cerebellar Long-Term Synaptic Depression: Role for a Postsynaptic Leaky Integrator. Neuron, 2007, 54, 787-800.	8.1	106
64	Welcome to Brain Cell Biology!. Brain Cell Biology, 2007, 35, 1-3.	3.2	0
65	Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon. Neuron, 2006, 49, 81-94.	8.1	154
66	Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biology, 2006, 35, 207-228.	3.2	89
67	Brain Cell Technology: A valuable new resource for novel techniques. Brain Cell Biology, 2006, 35, 205-206.	3.2	Ο
68	The Chloride Transporter Na+-K+-Cl- Cotransporter Isoform-1 Contributes to Intracellular Chloride Increases after In Vitro Ischemia. Journal of Neuroscience, 2006, 26, 1396-1406.	3.6	119
69	Structural Domains Involved in the Regulation of Transmitter Release by Synapsins. Journal of Neuroscience, 2005, 25, 2658-2669.	3.6	134
70	Different Presynaptic Roles of Synapsins at Excitatory and Inhibitory Synapses. Journal of Neuroscience, 2004, 24, 11368-11380.	3.6	315
71	Molecular Determinants of Synapsin Targeting to Presynaptic Terminals. Journal of Neuroscience, 2004, 24, 3711-3720.	3.6	125
72	Synaptotagmin I Synchronizes Transmitter Release in Mouse Hippocampal Neurons. Journal of Neuroscience, 2004, 24, 6127-6132.	3.6	151

#	Article	IF	CITATIONS
73	Local Calcium Signaling in Neurons. Neuron, 2003, 40, 331-346.	8.1	545
74	Regulation of Neurotransmitter Release by Synapsin III. Journal of Neuroscience, 2002, 22, 4372-4380.	3.6	158
75	Calcium-dependent neurotransmitter release: Synaptotagmin to the rescue. Journal of Comparative Neurology, 2001, 436, 1-3.	1.6	6
76	Illuminating the location of brain glutamate receptors. Nature Neuroscience, 2001, 4, 1051-1052.	14.8	7
77	Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse. Journal of Physiology, 2001, 531, 141-146.	2.9	41
78	Distribution of Functional Glutamate and GABA Receptors on Hippocampal Pyramidal Cells and Interneurons. Journal of Neurophysiology, 2000, 84, 28-38.	1.8	91
79	Contribution of Superficial Layer Neurons to Premotor Bursts in the Superior Colliculus. Journal of Neurophysiology, 2000, 84, 460-471.	1.8	77
80	A Genetically Encoded Ratiometric Indicator for Chloride. Neuron, 2000, 27, 447-459.	8.1	406
81	Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression. Neuron, 2000, 28, 233-244.	8.1	233
82	Local Excitatory Circuits in the Intermediate Gray Layer of the Superior Colliculus. Journal of Neurophysiology, 1999, 81, 1424-1427.	1.8	71
83	Calmodulin at the channel gate. Nature, 1999, 399, 105-108.	27.8	21
84	Proteins involved in synaptic vesicle trafficking. Journal of Physiology, 1999, 520, 33-41.	2.9	65
85	Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 269-279.	4.0	478
86	Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature Neuroscience, 1998, 1, 29-35.	14.8	154
87	Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature, 1998, 396, 753-756.	27.8	493
88	The Calcium Signal for Transmitter Secretion from Presynaptic Nerve Terminals. Annals of the New York Academy of Sciences, 1991, 635, 365-381.	3.8	258