
Norton H Neff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11530389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorometric estimation of 4â€hydroxyâ€3â€methoxyphenylethyleneglycol sulphate in brain. British Journal of Pharmacology, 1972, 45, 435-441.	5.4	171
2	A new projection from locus coeruleus to the spinal ventral columns: histochemical and biochemical evidence. Brain Research, 1978, 148, 207-213.	2.2	171
3	GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. Journal of Neurochemistry, 2002, 81, 696-707.	3.9	143
4	1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochemical Pharmacology, 1988, 37, 4573-4574.	4.4	128
5	DIFFERENTIATION OF DOPAMINERGIC AND NORADRENERGIC NEURONS IN RAT SPINAL CORD. Journal of Neurochemistry, 1978, 30, 1095-1099.	3.9	123
6	Epinephrine: A Potential Neurotransmitter in Retina. Journal of Neurochemistry, 1983, 41, 1440-1444.	3.9	116
7	Epidermal Growth Factor Enhances Striatal Dopaminergic Parameters in the 1-Methyl-4-Phenyl-I, 2, 3, 6-Tetrahydropyridine-Treated Mouse. Journal of Neurochemistry, 1991, 57, 479-482.	3.9	84
8	Current status of dopamine in the mammalian spinal cord. Biochemical Pharmacology, 1979, 28, 1569-1573.	4.4	82
9	Nicotine abstinence in the mouse. Brain Research, 1999, 850, 189-196.	2.2	82
10	GM1 Ganglioside: In Vivo and In Vitro Trophic Actions on Central Neurotransmitter Systems. Journal of Neurochemistry, 1998, 70, 1335-1345.	3.9	81
11	Nicotine and endogenous opioids: Neurochemical and pharmacological evidence. Neuropharmacology, 2011, 60, 1209-1220.	4.1	73
12	Preproenkephalin mRNA and Methionineâ€Enkephalin Content Are Increased in Mouse Striatum After Treatment with Nicotine. Journal of Neurochemistry, 1995, 64, 1878-1883.	3.9	72
13	Aromatic L-Amino Acid Decarboxylase Is Modulated by D1 Dopamine Receptors in Rat Retina. Journal of Neurochemistry, 1990, 54, 787-791.	3.9	71
14	Activation of dopamine-containing amacrine cells of retina: light-induced increase of acidic dopamine metabolites. Brain Research, 1983, 260, 125-127.	2.2	69
15	Aromatic l-Amino Acid Decarboxylase Activity of the Rat Retina Is Modulated In Vivo by Environmental Light Maria Hadjiconstantinou. Journal of Neurochemistry, 1988, 51, 1560-1564.	3.9	69
16	Regulation of tyrosine hydroxylase and aromatic l-amino acid decarboxylase by dopaminergic drugs. European Journal of Pharmacology, 1997, 323, 149-157.	3.5	60
17	Enhancing Aromatic Lâ€amino Acid Decarboxylase Activity: Implications for Lâ€DOPA Treatment in Parkinson's Disease. CNS Neuroscience and Therapeutics, 2008, 14, 340-351.	3.9	59
18	Modulation of Retinal Aromatic l-Amino Acid Decarboxylase via ?2Adrenoceptors. Journal of Neurochemistry, 1989, 52, 647-652.	3.9	57

NORTON H NEFF

#	Article	IF	CITATIONS
19	Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Experimental Neurology, 2003, 179, 159-166.	4.1	46
20	GM1â€induced activation of phosphatidylinositol 3â€kinase: involvement of Trk receptors. Journal of Neurochemistry, 2008, 104, 1466-1477.	3.9	46
21	Acute nicotine changes dynorphin and prodynorphin mRNA in the striatum. Psychopharmacology, 2009, 201, 507-516.	3.1	46
22	GM1 and ERK signaling in the aged brain. Brain Research, 2005, 1054, 125-134.	2.2	45
23	Evidence that dopamine is a neurotransmitter in peripheral tissues. Life Sciences, 1983, 32, 1665-1674.	4.3	43
24	1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment decreases dopamine and increases lipofuscin in mouse retina. Neuroscience Letters, 1986, 72, 221-226.	2.1	42
25	Catabolism of Endogenous Dopamine in Peripheral Tissues: Is There an Independent Role for Dopamine in Peripheral Neurotransmission?. Journal of Neurochemistry, 1982, 38, 1453-1458.	3.9	40
26	GM1 ganglioside improves spatial learning and memory of aged rats. Behavioural Brain Research, 1997, 85, 203-211.	2.2	40
27	Met-enkephalin and preproenkephalin mRNA changes in the striatum of the nicotine abstinence mouse. Neuroscience Letters, 2002, 325, 67-71.	2.1	40
28	Chemical mechanisms for photoaffinity labeling of receptors. Biochemical Pharmacology, 1985, 34, 2821-2826.	4.4	39
29	Cyclobenzaprine: a possible mechanism of action for its muscle relaxant effect. Canadian Journal of Physiology and Pharmacology, 1981, 59, 37-44.	1.4	37
30	Dynorphin and prodynorphin mRNA changes in the striatum during nicotine withdrawal. Synapse, 2008, 62, 448-455.	1.2	36
31	Nerve growth factor (NGF) and NGF mRNA change in rat uterus during pregnancy. Neuroscience Letters, 2000, 294, 58-62.	2.1	35
32	Muscarinic Receptors Modulate Dopamine-Activated Adenylate Cyclase of Rat Striatum. Journal of Neurochemistry, 1983, 41, 1364-1369.	3.9	33
33	Photoaffinity Labeling of the GABAAReceptor with [3H]Muscimol. Journal of Neurochemistry, 1985, 44, 916-921.	3.9	32
34	Dizocilpine enhances striatal tyrosine hydroxylase and aromatic L-amino acid decarboxylase activity. European Journal of Pharmacology, 1995, 289, 97-101.	2.6	32
35	Tyrosine hydroxylase, aromatic l-amino acid decarboxylase and dopamine metabolism after chronic treatment with dopaminergic drugs. Brain Research, 1999, 830, 237-245.	2.2	30
36	Phosphorylation and Activation of Brain Aromatic l-Amino Acid Decarboxylase by Cyclic AMP-Dependent Protein Kinase. Journal of Neurochemistry, 2002, 75, 725-731.	3.9	28

NORTON H NEFF

#	Article	IF	CITATIONS
37	Enhanced dopamine uptake in the striatum following repeatedrestraint stress. Synapse, 2005, 57, 167-174.	1.2	27
38	Differential recovery of dopamine synthetic enzymes following MPTP and the consequences of GM1 ganglioside treatment. European Journal of Pharmacology, 1990, 181, 137-139.	3.5	24
39	<scp>GM</scp> 1 ganglioside enhances Ret signaling in striatum. Journal of Neurochemistry, 2014, 130, 541-554.	3.9	23
40	Hypoxia-Induced Neurotransmitter Deficits in Neonatal Rats Are Partially Corrected by Exogenous GM1 Ganglioside. Journal of Neurochemistry, 1990, 55, 864-869.	3.9	22
41	Chronic treatment with diisopropylfluorophosphate increases dopamine turnover in the striatum of the rat. European Journal of Pharmacology, 1984, 106, 607-611.	3.5	21
42	GM1 ganglioside restores abnormal responses to acute thermal and mechanical stimuli in aged rats. Brain Research, 2000, 858, 380-385.	2.2	21
43	Modulation of tyrosine hydroxylase and aromatic l-amino acid decarboxylase after inhibiting monoamine oxidase-A. European Journal of Pharmacology, 1996, 314, 51-59.	3.5	20
44	GM1 increases the content and mRNA of NGF in the brain of aged rats. NeuroReport, 1997, 8, 3823-3827.	1.2	19
45	Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synapse, 2011, 65, 91-98.	1.2	19
46	Clozapine Modulates Aromatic l-Amino Acid Decarboxylase Activity in Mouse Striatum. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 480-487.	2.5	18
47	Desensitization of δ-opioid receptors in nucleus accumbens during nicotine withdrawal. Psychopharmacology, 2011, 213, 735-744.	3.1	18
48	Sciatic nerve axotomy in aged rats: response of motoneurons and the effect of GM1 ganglioside treatment. Brain Research, 2003, 968, 44-53.	2.2	16
49	Increased expression of VMAT2 in dopaminergic neurons during nicotine withdrawal. Neuroscience Letters, 2009, 467, 182-186.	2.1	16
50	MPP+ depletes retinal dopamine and induces D-1 receptor supersensitivity. European Journal of Pharmacology, 1988, 148, 453-455.	3.5	15
51	Cholinergic deficits in aged rat spinal cord: restoration by GM1 ganglioside. Brain Research, 1997, 761, 250-256.	2.2	15
52	Motoric behavior in aged rats treated with GM1. Brain Research, 2001, 906, 92-100.	2.2	15
53	Nicotine withdrawal and \hat{I}^{e} -opioid receptors. Psychopharmacology, 2010, 210, 221-229.	3.1	15
54	Exposure to Light Accelerates the Formation of Dopamine from Exogenous L-DOPA in the Rat Retina. Journal of Ocular Pharmacology and Therapeutics, 1985, 1, 177-181.	1.4	12

NORTON H NEFF

#	Article	IF	CITATIONS
55	Glutamate receptors participate in the nicotine-induced changes of met-enkephalin in striatum. Brain Research, 2000, 878, 72-78.	2.2	12
56	Aromatic <scp>lâ€</scp> amino acid decarboxylase phosphorylation and activation by PKGIα <i>in vitro</i> . Journal of Neurochemistry, 2010, 114, 542-552.	3.9	11
57	Modulation of dopamine metabolism in the retina via dopamine D2 receptors. Brain Research, 1990, 533, 20-23.	2.2	10
58	CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology, 2012, 221, 143-153.	3.1	10
59	GM1 and the Aged Braina. Annals of the New York Academy of Sciences, 1998, 845, 225-231.	3.8	9
60	Decreased neuropeptide content in the spinal cord of aged rats. NeuroReport, 1999, 10, 513-516.	1.2	8
61	1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) accelerates the accumulation of lipofuscin in mouse adrenal gland. Neuroscience Letters, 1987, 83, 1-6.	2.1	7
62	Retinal cholinergic and dopaminergic deficits of aged rats are improved following treatment with GM1 ganglioside. Brain Research, 2000, 877, 1-6.	2.2	7
63	D2 dopamine receptor antisense increases the activity and mRNA of tyrosine hydroxylase and aromatic l-amino acid decarboxylase in mouse brain. Neuroscience Letters, 1996, 217, 105-108.	2.1	6
64	Tyrosine hydroxylase and aromatic l-amino acid decarboxylase in mesencephalic cultures after MPP+: the consequences of treatment with GM1 ganglioside. Brain Research, 1996, 742, 260-264.	2.2	6
65	The golden years: A tribute to Erminio Costa. Pharmacological Research, 2011, 64, 350-358.	7.1	1
66	DOPAMINERGIC AND NORADRENERGIC NEURONS IN SPINAL CORD: FUNCTIONAL IMPLICATIONS. , 1979, , 1339-1341.		0
67	Trophic Factors and GM1 Ganglioside in the Basal Ganglia. , 1994, , 225-234.		0