
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11529199/publications.pdf Version: 2024-02-01

ΗΔΙΝΝΔΗ

#	Article	IF	CITATIONS
1	Cerebellar Dysfunction as a Source of Dystonic Phenotypes in Mice. Cerebellum, 2023, 22, 719-729.	2.5	10
2	Microstructural white matter abnormalities in Lesch–Nyhan disease. European Journal of Neuroscience, 2022, 55, 264-276.	2.6	2
3	Blockade of M4 muscarinic receptors on striatal cholinergic interneurons normalizes striatal dopamine release in a mouse model of TOR1A dystonia. Neurobiology of Disease, 2022, 168, 105699.	4.4	5
4	Impaired Saccade Adaptation in Tremor-Dominant Cervical Dystonia—Evidence for Maladaptive Cerebellum. Cerebellum, 2021, 20, 678-686.	2.5	11
5	Neuronal Activity of Pallidal Versus Cerebellar Receiving Thalamus in Patients with Cervical Dystonia. Cerebellum, 2021, 20, 151-159.	2.5	7
6	A metabolomic study of cervical dystonia. Parkinsonism and Related Disorders, 2021, 82, 98-103.	2.2	6
7	Adapting to post-COVID19 research in Parkinson's disease: Lessons from a multinational experience. Parkinsonism and Related Disorders, 2021, 82, 146-149.	2.2	7
8	Quality of life in isolated dystonia: non-motor manifestations matter. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 622-628.	1.9	27
9	Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Scientific Reports, 2021, 11, 8523.	3.3	7
10	The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies. Frontiers in Neurology, 2021, 12, 660909.	2.4	16
11	Identical twins with progressive kyphoscoliosis and ophthalmoplegia: Expert commentary. Parkinsonism and Related Disorders, 2021, 92, 123-124.	2.2	0
12	Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia. Neurobiology of Disease, 2021, 155, 105369.	4.4	9
13	Differential expression of striatal proteins in a mouse model of DOPA-responsive dystonia reveals shared mechanisms among dystonic disorders. Molecular Genetics and Metabolism, 2021, 133, 352-361.	1.1	4
14	Oromandibular Dystonia: A Clinical Examination of 2,020 Cases. Frontiers in Neurology, 2021, 12, 700714.	2.4	20
15	Neuropathology of blepharospasm. Experimental Neurology, 2021, 346, 113855.	4.1	7
16	The emerging neurological spectrum of AARS2-associated disorders. Parkinsonism and Related Disorders, 2021, 93, 50-54.	2.2	3
17	Neurological research & training after the easing of lockdown in countries impacted by COVID-19. Journal of the Neurological Sciences, 2020, 418, 117105.	0.6	3
18	Physiological levels of folic acid reveal purine alterations in Lesch-Nyhan disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12071-12079.	7.1	13

#	Article	IF	CITATIONS
19	Medical and Surgical Treatments for Dystonia. Neurologic Clinics, 2020, 38, 325-348.	1.8	27
20	Pallidal Activity in Cervical Dystonia with and Without Head Tremor. Cerebellum, 2020, 19, 409-418.	2.5	27
21	Soft Nanomembrane Sensors and Flexible Hybrid Bioelectronics for Wireless Quantification of Blepharospasm. IEEE Transactions on Biomedical Engineering, 2020, 67, 3094-3100.	4.2	19
22	Combined occurrence of deleterious TOR1A and ANO3 variants in isolated generalized dystonia. Parkinsonism and Related Disorders, 2020, 73, 55-56.	2.2	1
23	The Anatomical Basis for Dystonia: The Motor Network Model. Tremor and Other Hyperkinetic Movements, 2020, 7, 506.	2.0	135
24	Macrocytic anemia in Lesch–Nyhan disease and its variants. Genetics in Medicine, 2019, 21, 353-360.	2.4	14
25	Soft Materialâ€Enabled, Active Wireless, Thinâ€Film Bioelectronics for Quantitative Diagnostics of Cervical Dystonia. Advanced Materials Technologies, 2019, 4, 1900458.	5.8	12
26	Diagnostic and clinical experience of patients with pantothenate kinase-associated neurodegeneration. Orphanet Journal of Rare Diseases, 2019, 14, 174.	2.7	10
27	The role of pallidum in the neural integrator model of cervical dystonia. Neurobiology of Disease, 2019, 125, 45-54.	4.4	29
28	Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. Neurobiology of Disease, 2019, 125, 115-122.	4.4	28
29	New approaches to discovering drugs that treat dystonia. Expert Opinion on Drug Discovery, 2019, 14, 893-900.	5.0	7
30	Editorial for neurobiology of disease special issue on dystonia progress in the neurobiology of dystonia. Neurobiology of Disease, 2019, 130, 104480.	4.4	0
31	Classification of the Dystonias. Current Clinical Neurology, 2019, , 193-195.	0.2	0
32	Dystonia genes and their biological pathways. Neurobiology of Disease, 2019, 129, 159-168.	4.4	49
33	Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Frontiers in Pharmacology, 2019, 10, 98.	3.5	91
34	A Scale to Assess Activities of Daily Living in Pantothenate Kinaseâ€Associated Neurodegeneration. Movement Disorders Clinical Practice, 2019, 6, 139-149.	1.5	9
35	The Dystonias. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 976-1000.	0.8	21
36	Naming Genes for Dystonia: DYT-z or Ditzy?. Tremor and Other Hyperkinetic Movements, 2019, 9, .	2.0	0

#	Article	IF	CITATIONS
37	Expert Opinion vs Patient Perspective in Treatment ofÂRareÂDisorders: Tooth Removal in Lesch-Nyhan Disease asÂanÂExample. JIMD Reports, 2018, 41, 25-27.	1.5	3
38	Dopamine Receptor Agonist Treatment of Idiopathic Dystonia: A Reappraisal in Humans and Mice. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 20-26.	2.5	20
39	Cervical dystonia and substance abuse. Journal of Neurology, 2018, 265, 970-975.	3.6	17
40	Pilot Single-Blind Trial of AbobotulinumtoxinA in Oromandibular Dystonia. Neurotherapeutics, 2018, 15, 452-458.	4.4	10
41	Treatable inherited rare movement disorders. Movement Disorders, 2018, 33, 21-35.	3.9	79
42	Longitudinal studies of botulinum toxin in cervical dystonia: Why do patients discontinue therapy?. Toxicon, 2018, 147, 89-95.	1.6	46
43	Evolving concepts in the pathogenesis of dystonia. Parkinsonism and Related Disorders, 2018, 46, S62-S65.	2.2	42
44	Predictors of alcohol responsiveness in dystonia. Neurology, 2018, 91, e2020-e2026.	1.1	15
45	A strategy for managing flu-like symptoms after botulinum toxin injections. Journal of Neurology, 2018, 265, 1932-1933.	3.6	9
46	Consensus-Based Attributes for Identifying Patients With Spasmodic Dysphonia and Other Voice Disorders. JAMA Otolaryngology - Head and Neck Surgery, 2018, 144, 657.	2.2	47
47	Compositional complexity of rods and rings. Molecular Biology of the Cell, 2018, 29, 2303-2316.	2.1	23
48	Dystonia treatment. Neurology, 2017, 88, 543-550.	1.1	50
49	Physiology of midbrain head movement neurons in cervical dystonia. Movement Disorders, 2017, 32, 904-912.	3.9	15
50	Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. Journal of Neural Transmission, 2017, 124, 417-430.	2.8	68
51	Alterations of restingâ€state fMRI measurements in individuals with cervical dystonia. Human Brain Mapping, 2017, 38, 4098-4108.	3.6	45
52	Psychiatric associations of adult-onset focal dystonia phenotypes. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 595-602.	1.9	76
53	Parkinsonism without dopamine neuron degeneration in aged <scp>l</scp> â€dopaâ€responsive dystonia knockin mice. Movement Disorders, 2017, 32, 1694-1700.	3.9	11
54	Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum, 2017, 16, 577-594.	2.5	184

#	Article	IF	CITATIONS
55	Research Priorities in Limb and Task-Specific Dystonias. Frontiers in Neurology, 2017, 8, 170.	2.4	34
56	The Anatomical Basis for Dystonia: The Motor Network Model. Tremor and Other Hyperkinetic Movements, 2017, 7, 506.	2.0	80
57	A Functional Magnetic Resonance Imaging Study of Head Movements in Cervical Dystonia. Frontiers in Neurology, 2016, 7, 201.	2.4	29
58	The partnership of patient advocacy groups and clinical investigators in the rare diseases clinical research network. Orphanet Journal of Rare Diseases, 2016, 11, 66.	2.7	62
59	Clinical and genetic features of cervical dystonia in a large multicenter cohort. Neurology: Genetics, 2016, 2, e69.	1.9	44
60	Locus Pocus. Movement Disorders, 2016, 31, 1759-1760.	3.9	3
61	A double-blind, placebo-controlled, crossover trial of the selective dopamine D1 receptor antagonist ecopipam in patients with Lesch-Nyhan disease. Molecular Genetics and Metabolism, 2016, 118, 160-166.	1.1	23
62	Botulinum toxin treatment failures in cervical dystonia: causes, management, and outcomes. Journal of Neurology, 2016, 263, 1188-1194.	3.6	53
63	A clinical trial of safety and tolerability for the selective dopamine D1 receptor antagonist ecopipam in patients with Lesch-Nyhan disease. Molecular Genetics and Metabolism, 2016, 117, 401-406.	1.1	14
64	"Complex―dystonia is not a category in the new 2013 consensus classification. Movement Disorders, 2016, 31, 1758-1759.	3.9	5
65	The role of polymyography in the treatment of cervical dystonia: the authors reply. Journal of Neurology, 2016, 263, 1665-1665.	3.6	0
66	Objective, computerized video-based rating of blepharospasm severity. Neurology, 2016, 87, 2146-2153.	1.1	20
67	Clinical and demographic characteristics related to onset site and spread of cervical dystonia. Movement Disorders, 2016, 31, 1874-1882.	3.9	39
68	Do clinical features of Leschâ€Nyhan disease correlate more closely with hypoxanthine or guanine recycling?. Journal of Inherited Metabolic Disease, 2016, 39, 85-91.	3.6	7
69	Potential mechanisms for low uric acid in Parkinson disease. Journal of Neural Transmission, 2016, 123, 365-370.	2.8	14
70	Cp/Heph mutant mice have ironâ€induced neurodegeneration diminished by deferiprone. Journal of Neurochemistry, 2015, 135, 958-974.	3.9	35
71	Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both?. Movement Disorders, 2015, 30, 834-842.	3.9	48
72	Ocular Palatal Tremor Plus Dystonia: New Syndromic Association. Movement Disorders Clinical Practice, 2015, 2, 267-270.	1.5	6

#	Article	IF	CITATIONS
73	Consequences of impaired purine recycling on the proteome in a cellular model of Lesch–Nyhan disease. Molecular Genetics and Metabolism, 2015, 114, 570-579.	1.1	10
74	Dystonia. Neurology: Clinical Practice, 2015, 5, 232-240.	1.6	14
75	Clinical severity in Lesch–Nyhan disease: The role of residual enzyme and compensatory pathways. Molecular Genetics and Metabolism, 2015, 114, 55-61.	1.1	49
76	Temporal profile of improvement of tardive dystonia after globus pallidus deep brain stimulation. Parkinsonism and Related Disorders, 2015, 21, 116-119.	2.2	27
77	Brain white matter volume abnormalities in Lesch-Nyhan disease and its variants. Neurology, 2015, 84, 190-196.	1.1	30
78	Why are voluntary head movements in cervical dystonia slow?. Parkinsonism and Related Disorders, 2015, 21, 561-566.	2.2	17
79	Neural Substrates for Head Movements in Humans: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 2015, 35, 9163-9172.	3.6	14
80	Dystonia and cerebellar degeneration in the leaner mouse mutant. Brain Research, 2015, 1611, 56-64.	2.2	12
81	Secured web-based video repository for multicenter studies. Parkinsonism and Related Disorders, 2015, 21, 366-371.	2.2	21
82	Diagnosis and Treatment of Dystonia. Neurologic Clinics, 2015, 33, 77-100.	1.8	120
83	Consequences of Delayed Dental Extraction in Leschâ€Nyhan Disease. Movement Disorders Clinical Practice, 2014, 1, 225-229.	1.5	19
84	The New Classification System for the Dystonias: Why Was It Needed and How Was It Developed?. Movement Disorders Clinical Practice, 2014, 1, 280-284.	1.5	41
85	Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia. Neurobiology of Disease, 2014, 62, 372-380.	4.4	46
86	Designing Clinical Trials for Dystonia. Neurotherapeutics, 2014, 11, 117-127.	4.4	15
87	Treatment of myoclonus-dystonia syndrome with tetrabenazine. Parkinsonism and Related Disorders, 2014, 20, 1423-1426.	2.2	30
88	Globus pallidus deep brain stimulation for adult-onset axial dystonia. Parkinsonism and Related Disorders, 2014, 20, 1279-1282.	2.2	17
89	Transcriptomic Approach to Lesch-Nyhan Disease. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 208-217.	1.1	8
90	Genotype–phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder. Brain, 2014, 137, 1282-1303.	7.6	105

#	Article	IF	CITATIONS
91	Loss of dopamine phenotype among midbrain neurons in <scp>L</scp> esch– <scp>N</scp> yhan disease. Annals of Neurology, 2014, 76, 95-107.	5.3	41
92	Lesch–Nyhan disease with no HPRT1 gene mutation?. Revista Clinica Espanola, 2014, 214, 459-460.	0.6	1
93	Genotypic and phenotypic spectrum in attenuated variants of Lesch–Nyhan disease. Molecular Genetics and Metabolism, 2014, 112, 280-285.	1.1	35
94	Dystonia as a network disorder: What is the role of the cerebellum?. Neuroscience, 2014, 260, 23-35.	2.3	215
95	The focal dystonias: Current views and challenges for future research. Movement Disorders, 2013, 28, 926-943.	3.9	184
96	Dystonia rating scales: Critique and recommendations. Movement Disorders, 2013, 28, 874-883.	3.9	150
97	The dystonias: Past, present, and future. Movement Disorders, 2013, 28, 849-850.	3.9	2
98	Assessment of patients with isolated or combined dystonia: An update on dystonia syndromes. Movement Disorders, 2013, 28, 889-898.	3.9	88
99	Regional brain volume abnormalities in Lesch-Nyhan disease and its variants: a cross-sectional study. Lancet Neurology, The, 2013, 12, 1151-1158.	10.2	38
100	How long does it take to diagnose cervical dystonia?. Journal of the Neurological Sciences, 2013, 335, 72-74.	0.6	35
101	Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiology of Disease, 2013, 50, 151-159.	4.4	27
102	Subtle microstructural changes of the striatum in a DYT1 knock-in mouse model of dystonia. Neurobiology of Disease, 2013, 54, 362-371.	4.4	53
103	Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiology of Disease, 2013, 49, 200-210.	4.4	73
104	Neuropathology of cervical dystonia. Experimental Neurology, 2013, 241, 95-104.	4.1	110
105	Phenotypic variation among seven members of one family with deficiency of hypoxanthine–guanine phosphoribosyltransferase. Molecular Genetics and Metabolism, 2013, 110, 268-274.	1.1	12
106	Secondary blepharospasm associated with structural lesions of the brain. Journal of the Neurological Sciences, 2013, 331, 98-101.	0.6	59
107	Personalized Chemotherapy Profiling Using Cancer Cell Lines from Selectable Mice. Clinical Cancer Research, 2013, 19, 1139-1146.	7.0	24
108	Development and validation of a clinical guideline for diagnosing blepharospasm. Neurology, 2013, 81, 236-240.	1.1	81

#	Article	IF	CITATIONS
109	Keeping Your Head On Target. Journal of Neuroscience, 2013, 33, 11281-11295.	3.6	53
110	Purine metabolism during neuronal differentiation: the relevance of purine synthesis and recycling. Journal of Neurochemistry, 2013, 127, 805-818.	3.9	38
111	Metabolic disorders of purine metabolism affecting the nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 113, 1827-1836.	1.8	61
112	Genotype-Phenotype Correlations in Lesch-Nyhan Disease. Journal of Biological Chemistry, 2012, 287, 2997-3008.	3.4	41
113	Selective and Sustained α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Activation in Cerebellum Induces Dystonia in Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 733-741.	2.5	37
114	Clinical subtypes of anterocollis in parkinsonian syndromes. Journal of the Neurological Sciences, 2012, 315, 100-103.	0.6	16
115	Update on the Phenotypic Spectrum of Lesch-Nyhan Disease and its Attenuated Variants. Current Rheumatology Reports, 2012, 14, 189-194.	4.7	61
116	Functional analysis of dopaminergic systems in a DYT1 knock-in mouse model of dystonia. Neurobiology of Disease, 2012, 48, 66-78.	4.4	95
117	Convergent mechanisms in etiologically-diverse dystonias. Expert Opinion on Therapeutic Targets, 2011, 15, 1387-1403.	3.4	24
118	The functional neuroanatomy of dystonia. Neurobiology of Disease, 2011, 42, 185-201.	4.4	397
119	Mechanisms for phenotypic variation in Lesch–Nyhan disease and its variants. Human Genetics, 2011, 129, 71-78.	3.8	21
120	Extreme task specificity in writer's cramp. Movement Disorders, 2011, 26, 2107-2109.	3.9	20
121	HPRT Deficiency Coordinately Dysregulates Canonical Wnt and Presenilin-1 Signaling: A Neuro-Developmental Regulatory Role for a Housekeeping Gene?. PLoS ONE, 2011, 6, e16572.	2.5	34
122	Kinematic and electromyographic tools for characterizing movement disorders in mice. Movement Disorders, 2010, 25, 265-274.	3.9	22
123	Definition and classification of hyperkinetic movements in childhood. Movement Disorders, 2010, 25, 1538-1549.	3.9	374
124	NEURONAL VOLTAGE-GATED CALCIUM CHANNELS: BRIEF OVERVIEW OF THEIR FUNCTION AND CLINICAL IMPLICATIONS IN NEUROLOGY. Neurology, 2010, 75, 937-938.	1.1	6
125	Attenuated variants of Lesch-Nyhan disease. Brain, 2010, 133, 671-689.	7.6	147
126	Reply: Attenuated variants of Lesch-Nyhan disease: the case of King James VI/I. Brain, 2010, 133, e154-e154.	7.6	0

#	Article	IF	CITATIONS
127	Treatment strategies for dystonia. Expert Opinion on Pharmacotherapy, 2010, 11, 5-15.	1.8	83
128	Lesch-Nyhan disease: from mechanism to model and back again. DMM Disease Models and Mechanisms, 2009, 2, 116-121.	2.4	60
129	Severe gouty arthritis and mild neurologic symptoms due to F199C, a newly identified variant of the hypoxanthine guanine phosphoribosyltransferase. Arthritis and Rheumatism, 2009, 60, 2201-2204.	6.7	29
130	Gene expression and mRNA editing of serotonin receptor 2C in brains of HPRT gene knock-out mice, an animal model of Lesch-Nyhan disease. Journal of Clinical Neuroscience, 2009, 16, 1061-1063.	1.5	11
131	Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Human Molecular Genetics, 2009, 18, 2317-2327.	2.9	78
132	Paroxysmal dyskinesias in mice. Movement Disorders, 2008, 23, 259-264.	3.9	46
133	Experimental Therapeutics for Dystonia. Neurotherapeutics, 2008, 5, 198-209.	4.4	33
134	Consequences of impaired purine recycling in dopaminergic neurons. Neuroscience, 2008, 152, 761-772.	2.3	36
135	Research priorities in spasmodic dysphonia. Otolaryngology - Head and Neck Surgery, 2008, 139, 495-505.	1.9	147
136	Irregularity distinguishes limb tremor in cervical dystonia from essential tremor. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 187-189.	1.9	58
137	Cerebral Ischemia Mediates the Effect of Serum Uric Acid on Cognitive Function. Stroke, 2008, 39, 3418-3420.	2.0	71
138	The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain, 2008, 131, 2499-2509.	7.6	280
139	Serum uric acid and brain ischemia in normal elderly adults. Neurology, 2007, 69, 1418-1423.	1.1	121
140	Serum uric acid and cognitive function in community-dwelling older adults Neuropsychology, 2007, 21, 136-140.	1.3	100
141	Nifedipine Suppresses Self-Injurious Behaviors in Animals. Developmental Neuroscience, 2007, 29, 241-250.	2.0	23
142	A human neuronal tissue culture model for Lesch-Nyhan disease. Journal of Neurochemistry, 2007, 101, 841-853.	3.9	30
143	Behavioral aspects of Lesch-Nyhan disease and its variants. Developmental Medicine and Child Neurology, 2007, 47, 673-677.	2.1	5
144	Basal ganglia dopamine loss due to defect in purine recycling. Neurobiology of Disease, 2007, 26, 396-407.	4.4	48

#	Article	IF	CITATIONS
145	Neuroanatomical substrates for paroxysmal dyskinesia in lethargic mice. Neurobiology of Disease, 2007, 27, 249-257.	4.4	22
146	The Role of Dopamine Receptors in the Neurobehavioral Syndrome Provoked by Activation of L-Type Calcium Channels in Rodents. Developmental Neuroscience, 2006, 28, 505-517.	2.0	20
147	Delineation of the motor disorder of Lesch–Nyhan disease. Brain, 2006, 129, 1201-1217.	7.6	247
148	A new twist on the anatomy of dystonia: The basal ganglia and the cerebellum?. Neurology, 2006, 67, 1740-1741.	1.1	129
149	Sudden death in Leschâ€Nyhan disease. Developmental Medicine and Child Neurology, 2006, 48, 923-926.	2.1	0
150	Sudden death in Lesch-Nyhan disease. Developmental Medicine and Child Neurology, 2006, 48, 923.	2.1	23
151	A Golgi study of neuronal architecture in a genetic mouse model for Lesch–Nyhan disease. Neurobiology of Disease, 2005, 20, 479-490.	4.4	31
152	Rodent models for dystonia research: Characteristics, evaluation, and utility. Movement Disorders, 2005, 20, 283-292.	3.9	77
153	Lesch–Nyhan disease in a female with a clinically normal monozygotic twin. Molecular Genetics and Metabolism, 2005, 85, 70-77.	1.1	49
154	Animal models of generalized dystonia. NeuroRx, 2005, 2, 504-512.	6.0	79
155	Behavioral aspects of Lesch–Nyhan disease and its variants. Developmental Medicine and Child Neurology, 2005, 47, 673.	2.1	159
156	Tetrahydrobiopterin deficiency and dopamine loss in a genetic mouse model of Lesch-Nyhan disease. Journal of Inherited Metabolic Disease, 2004, 27, 165-178.	3.6	20
157	The Motor Disorder of Classic Leschâ€Nyhan Disease. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1161-1164.	1.1	5
158	The Spectrum of Mutations Causing HPRT Deficiency: An Update. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1153-1160.	1.1	56
159	Abnormal motor behavior and vestibular dysfunction in the stargazer mouse mutant. Neuroscience, 2004, 127, 785-796.	2.3	60
160	Expression of c- <i>fos</i> in the Brain after Activation of L-Type Calcium Channels. Developmental Neuroscience, 2003, 25, 403-411.	2.0	18
161	Self-Biting Induced by Activation of L-Type Calcium Channels in Mice: Dopaminergic Influences. Developmental Neuroscience, 2003, 25, 20-25.	2.0	23
162	Paroxysmal Dyskinesias in the Lethargic Mouse Mutant. Journal of Neuroscience, 2002, 22, 8193-8200.	3.6	33

#	Article	IF	CITATIONS
163	Abnormal Cerebellar Signaling Induces Dystonia in Mice. Journal of Neuroscience, 2002, 22, 7825-7833.	3.6	189
164	Self-Biting Induced by Activation of L-Type Calcium Channels in Mice: Serotonergic Influences. Developmental Neuroscience, 2002, 24, 322-327.	2.0	24
165	Pharmacologic thresholds for self-injurious behavior in a genetic mouse model of Lesch–Nyhan disease. Pharmacology Biochemistry and Behavior, 2002, 73, 583-592.	2.9	16
166	Triggers of paroxysmal dyskinesia in the calcium channel mouse mutant tottering. Pharmacology Biochemistry and Behavior, 2002, 73, 631-637.	2.9	61
167	Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch–Nyhan disease. Developmental Brain Research, 2002, 133, 127-139.	1.7	44
168	Distinct Behavioral and Neuropathological Abnormalities in Transgenic Mouse Models of HD and DRPLA. Neurobiology of Disease, 2001, 8, 405-418.	4.4	47
169	Neurocognitive functioning in Lesch-Nyhan disease and partial hypoxanthine-guanine phosphoribosyltransferase deficiency. Journal of the International Neuropsychological Society, 2001, 7, 805-812.	1.8	55
170	Ocular motor dysfunction in lesch-Nyhan disease. Pediatric Neurology, 2001, 24, 200-204.	2.1	33
171	Selfâ€injurious behavior: Gene–brain–behavior relationships. Mental Retardation and Developmental Disabilities Research Reviews, 2001, 7, 3-12.	3.6	119
172	Calcium channel agonists and dystonia in the mouse. Movement Disorders, 2000, 15, 542-551.	3.9	71
173	Lesch–Nyhan disease and the basal ganglia. Brain Research Reviews, 2000, 32, 449-475.	9.0	166
174	The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutation Research - Reviews in Mutation Research, 2000, 463, 309-326.	5.5	221
175	Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin [published erratum appears in Hum Mol Genet 1999 May;8(5):943]. Human Molecular Genetics, 1999, 8, 397-407.	2.9	687
176	Calcium channel activation and self-biting in mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15228-15232.	7.1	57
177	Influence of Age and Strain on Striatal Dopamine Loss in a Genetic Mouse Model of Leschâ€Nyhan Disease. Journal of Neurochemistry, 1999, 72, 225-229.	3.9	54
178	Bone marrow transplantation does not ameliorate the neurologic symptoms in mice deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT). Metabolic Brain Disease, 1999, 14, 57-65.	2.9	6
179	Craniocerebral Magnetic Resonance Imaging Measurement and Findings in Lesch-Nyhan Syndrome. Archives of Neurology, 1998, 55, 547.	4.5	75
180	Chronic meningitis with cranial neuropathies in Wegener's granulomatosis. Case report and review of the literature. Arthritis and Rheumatism, 1997, 40, 573-577.	6.7	43

#	Article	IF	CITATIONS
181	Gene therapy and the brain. British Medical Bulletin, 1995, 51, 138-148.	6.9	17
182	Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. Journal of Neuroscience, 1994, 14, 1164-1175.	3.6	131
183	Brain Purines in a Genetic Mouse Model of Lesch-Nyhan Disease. Journal of Neurochemistry, 1993, 60, 2036-2045.	3.9	51
184	Gene therapy for disorders of the nervous system. Trends in Biotechnology, 1993, 11, 192-197.	9.3	7
185	Localization of hypoxanthine-guanine phosphoribosyltransferase mRNA in the mouse brain by in situ hybridization. Molecular and Cellular Neurosciences, 1992, 3, 64-78.	2.2	24
186	Functional analysis of brain dopamine systems in a genetic mouse model of Lesch-Nyhan syndrome. Journal of Pharmacology and Experimental Therapeutics, 1992, 263, 596-607.	2.5	55
187	Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce l-dopa. Neuron, 1991, 6, 371-380.	8.1	280
188	Amphetamine-induced behavioral phenotype in a hypoxanthine-guanine phosphoribosyltransferase-deficient mouse model of Lesch-Nyhan syndrome Behavioral Neuroscience, 1991, 105, 1004-1012.	1.2	45
189	Amphetamine-induced behavioral phenotype in a hypoxanthine^guanine phosphoribosyltransferase-deficient mouse model of Lesch-Nyhan syndrome Behavioral Neuroscience, 1991, 105, 1004-1012.	1.2	22
190	Chapter 1 Grafting genetically modified cells to the brain: conceptual and technical issues. Progress in Brain Research, 1990, 82, 1-10.	1.4	37
191	Animal models of Lesch-Nyhan syndrome. Brain Research Bulletin, 1990, 25, 467-475.	3.0	45
192	Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9011-9014.	7.1	322
193	Lesch-Nyhan Disease and Its Variants: Phenotypic and Mutation Spectrum of Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency in Argentine Patients. Journal of Inborn Errors of Metabolism and Screening, 0, 9, .	0.3	0
194	Clinical Features and Evolution of Blepharospasm: A Multicenter International Cohort and Systematic Literature Review. , 0, 1, .		11