
Timothy J Miles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1152651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nature Structural and Molecular Biology, 2010, 17, 1152-1153.	8.2	255
2	Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9318-9323.	7.1	119
3	Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature, 2018, 560, 192-197.	27.8	112
4	Novel hydroxyl tricyclics (e.g., GSK966587) as potent inhibitors of bacterial type IIA topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5437-5441.	2.2	58
5	Novel cyclohexyl-amides as potent antibacterials targeting bacterial type IIA topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7483-7488.	2.2	49
6	Novel amino-piperidines as potent antibacterials targeting bacterial type IIA topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7489-7495.	2.2	47
7	Novel tricyclics (e.g., GSK945237) as potent inhibitors of bacterial type IIA topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2464-2469.	2.2	39
8	Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2019, 62, 1180-1202.	6.4	33
9	Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2017, 60, 7284-7299.	6.4	31
10	Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 5905-5930.	6.4	25
11	The Q _i Site of Cytochrome <i>b</i> is a Promiscuous Drug Target in <i>Trypanosoma cruzi</i> and <i>Leishmania donovani</i> . ACS Infectious Diseases, 2020, 6, 515-528.	3.8	23
12	Flexible palladium-catalysed amidation reactions for the synthesis of complex aryl amides. Tetrahedron Letters, 2010, 51, 2685-2689.	1.4	19
13	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
14	The design of efficient and selective routes to pyridyl analogues of 3-oxo-3,4-dihydro-2H-1,4-(benzothiazine or benzoxazine)-6-carbaldehydes. Tetrahedron Letters, 2010, 51, 5035-5037.	1.4	14
15	The design of efficient and selective routes to pyridyl analogues of 2,3-dihydro-1,4-benzodioxin-6-carbaldehyde. Tetrahedron Letters, 2010, 51, 5038-5040.	1.4	14
16	Antitrypanosomal 8-Hydroxy-Naphthyridines Are Chelators of Divalent Transition Metals. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
17	The design of efficient and selective routes to a key 1,4-cis-substituted cyclohexylamide intermediate. Tetrahedron Letters, 2010, 51, 2846-2848.	1.4	8
18	Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity. Journal of Medicinal Chemistry, 2020, 63, 9523-9539.	6.4	8

#	Article	IF	CITATIONS
19	Optimisation of a key cross-coupling reaction towards the synthesis of a promising antileishmanial compound. Tetrahedron Letters, 2019, 60, 1243-1247.	1.4	2
20	ldentification of 6-amino-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidines with <i>in vivo</i> efficacy against visceral leishmaniasis. RSC Medicinal Chemistry, 2020, 11, 1168-1177.	3.9	2