Mykola Kulishov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11526220/publications.pdf

Version: 2024-02-01

567281 501196 1,162 34 15 28 citations g-index h-index papers 36 36 36 626 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solitons in a PT -symmetric grating-assisted co-directional coupler. Journal of Physics: Conference Series, 2021, 2038, 012015.	0.4	O
2	Parity time-symmetric vertical cavities: intrinsically single-mode regime in longitudinal direction. Optics Express, 2016, 24, 17125.	3.4	3
3	Analysis of PT -symmetric volume gratings beyond the paraxial approximation. Optics Express, 2015, 23, 9347.	3.4	25
4	Analysis of unidirectional non-paraxial invisibility of purely reflective PT-symmetric volume gratings. Optics Express, 2015, 23, 18694.	3.4	12
5	Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating. Optics Express, 2014, 22, 23164.	3.4	10
6	Parity-time symmetry diffractives implementing unidirectional diffraction–application to optical combiners. Proceedings of SPIE, 2014, , .	0.8	0
7	Resonant cavities based on Parity-Time-symmetric diffractive gratings. Optics Express, 2013, 21, 9473.	3.4	31
8	Distributed Bragg reflector structures based on PT-symmetric coupling with lowest possible lasing threshold. Optics Express, 2013, 21, 22327.	3.4	32
9	Free space diffraction on active gratings with balanced phase and gain/loss modulations. Optics Express, 2012, 20, 29319.	3.4	25
10	Second-order photonic temporal differentiator based on a phase-shifted long period fiber grating. , 2009, , .		2
11	Long-period-fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics. Optics Letters, 2009, 34, 1045.	3.3	20
12	Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Optics Letters, 2009, 34, 3116.	3.3	50
13	First-order loss-less differentiators using long period gratings made in Er-doped fibers. Optics Express, 2009, 17, 461.	3.4	8
14	Theoretical and Experimental Analysis of Long-Period Fiber Gratings Made Directly Into Er-Doped Active Fibers. Journal of Lightwave Technology, 2009, 27, 2335-2342.	4.6	9
15	Ultrafast All-Optical Differentiators Based on Fiber Gratings. , 2007, , .		2
16	Design of terahertz-bandwidth arbitrary-order temporal differentiators based on long-period fiber gratings. Optics Letters, 2007, 32, 2978.	3.3	36
17	Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Optics Express, 2007, 15, 371.	3.4	159
18	Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings. Optics Express, 2007, 15, 6152.	3.4	63

#	Article	IF	CITATIONS
19	Ultra-Wideband Temporal Differentiators Based on Phase-Shifted Fiber Bragg Gratings. , 2007, , .		1
20	All-Fiber Temporal Differentiator for Sub-picosecond Optical Waveforms. Springer Series in Chemical Physics, 2007, , 223-225.	0.2	0
21	Ultrafast all-optical differentiators. Optics Express, 2006, 14, 10699.	3.4	183
22	Ultrashort pulse propagation in uniform and nonuniform waveguide long-period gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1319.	1.5	15
23	Nonreciprocal waveguide Bragg gratings. Optics Express, 2005, 13, 3068.	3.4	205
24	Trapping light in a ring resonator using a grating-assisted coupler with asymmetric transmission. Optics Express, 2005, 13, 3567.	3.4	37
25	Long-period fiber gratings as ultrafast optical differentiators. Optics Letters, 2005, 30, 2700.	3.3	126
26	Ultrashort pulse propagation in grating-assisted codirectional couplers. Optics Express, 2004, 12, 2699.	3.4	5
27	Theory and practice of long-period gratings: when a loss becomes a gain. Optics Letters, 2003, 28, 686.	3.3	41
28	Electronically reconfigurable superimposed waveguide long-period gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1632.	1.5	14
29	Switchable optical element with Bragg mode diffraction. Optics Letters, 2001, 26, 759.	3.3	5
30	Electro-optically induced tilted phase gratings in waveguides. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 457.	2.1	8
31	Electro-optically reconfigurable waveguide superimposed gratings. Optics Express, 2001, 9, 483.	3.4	6
32	Tunable electro-optic microlens array I Planar geometry. Applied Optics, 2000, 39, 2332.	2.1	12
33	Modeling of a converging gradient-index lens with variable focal length in a lanthanum-modified lead zirconate titanate ceramic cylinder with a lateral multielectrode structure. Applied Optics, 1998, 37, 3506.	2.1	5
34	Adjustable electro-optic microlens with two concentric ring electrodes. Optics Letters, 1998, 23, 1936.	3.3	12