Sumiko Denda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11521260/publications.pdf

Version: 2024-02-01

34 papers 2,256 citations

20 h-index 395702 33 g-index

34 all docs

34 docs citations

times ranked

34

2091 citing authors

#	Article	IF	CITATIONS
1	Mathematical-model-guided development of full-thickness epidermal equivalent. Scientific Reports, 2018, 8, 17999.	3.3	14
2	Expression level of Orai3 correlates with agingâ€related changes in mechanical stimulationâ€induced calcium signalling in keratinocytes. Experimental Dermatology, 2017, 26, 276-278.	2.9	4
3	Role of <scp>STIM</scp> 1–Orai1 system in intraâ€eellular calcium elevation induced by <scp>ATP</scp> in cultured human keratinocytes. Experimental Dermatology, 2016, 25, 323-325.	2.9	3
4	Frontiers in epidermal barrier homeostasis – an approach to mathematical modelling of epidermal calcium dynamics. Experimental Dermatology, 2014, 23, 79-82.	2.9	9
5	Coculture system of keratinocytes and dorsalâ€rootâ€ganglionâ€derived cells for screening neurotrophic factors involved in guidance of neuronal axon growth in the skin. Experimental Dermatology, 2014, 23, 58-60.	2.9	18
6	External negative electric potential accelerates exocytosis of lamellar bodies in human skin <i>ex vivo</i> . Experimental Dermatology, 2013, 22, 421-423.	2.9	9
7	How does epidermal pathology interact with mental state?. Medical Hypotheses, 2013, 80, 194-196.	1.5	20
8	Ryanodine Receptors Are Expressed in Epidermal Keratinocytes and Associated with Keratinocyte Differentiation and Epidermal Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2012, 132, 69-75.	0.7	26
9	<i>In vitro</i> formation of organized structure between keratinocytes and dorsalâ€rootâ€ganglion cells. Experimental Dermatology, 2012, 21, 886-888.	2.9	5
10	Oxytocin is expressed in epidermal keratinocytes and released upon stimulation with adenosine $5\hat{a}\in^2\hat{a}\in^{\hat{l}^3\hat{a}\in^{\hat{t}}}$ hio]triphosphate <i>in vitro</i> . Experimental Dermatology, 2012, 21, 535-537.	2.9	49
11	Phosphodiesterase inhibitors block the acceleration of skin permeability barrier repair by red light. Experimental Dermatology, 2011, 20, 568-571.	2.9	8
12	Morphological and functional differences in coculture system of keratinocytes and dorsal-root-ganglion-derived cells depending on time of seeding. Experimental Dermatology, 2011, 20, 464-467.	2.9	22
13	Calcium ion propagation in cultured keratinocytes and other cells in skin in response to hydraulic pressure stimulation. Journal of Cellular Physiology, 2010, 224, 229-233.	4.1	24
14	Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of coldâ€sensitive TRP receptors in epidermal permeability barrier homoeostasis. Experimental Dermatology, 2010, 19, 791-795.	2.9	67
15	Topical Application of TRPA1 Agonists and Brief Cold Exposure Accelerate Skin Permeability Barrier Recovery. Journal of Investigative Dermatology, 2010, 130, 1942-1945.	0.7	50
16	Neuronal Nitric Oxide Synthase in Epidermis Is Involved in Cutaneous Circulatory Response to Mechanical Stimulation. Journal of Investigative Dermatology, 2010, 130, 1158-1166.	0.7	17
17	Exposure to Low Temperature Induces Elevation of Intracellular Calcium in Cultured Human Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 1945-1948.	0.7	43
18	Glycolic acid induces keratinocyte proliferation in a skin equivalent model via TRPV1 activation. Journal of Dermatological Science, 2010, 57, 108-113.	1.9	30

#	Article	IF	Citations
19	Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell and Tissue Research, 2009, 338, 99-106.	2.9	80
20	Calcium Ion Gradients and Dynamics in Cultured Skin Slices of Rat Hindpaw in Response to Stimulation with ATP. Journal of Investigative Dermatology, 2009, 129, 584-589.	0.7	27
21	Expressions of rod and cone photoreceptorâ€like proteins in human epidermis. Experimental Dermatology, 2009, 18, 567-570.	2.9	63
22	Methods for Identifying Novel Integrin Ligands. Methods in Enzymology, 2007, 426, 223-237.	1.0	8
23	Air-exposed keratinocytes exhibited intracellular calcium oscillation. Skin Research and Technology, 2007, 13, 195-201.	1.6	39
24	Epidermal keratinocytes as the forefront of the sensory system. Experimental Dermatology, 2007, 16, 157-161.	2.9	128
25	Functional Vanilloid Receptors in Cultured Normal Human Epidermal Keratinocytes. Biochemical and Biophysical Research Communications, 2002, 291, 124-129.	2.1	264
26	Î ³ -Aminobutyric Acid (A) Receptor Agonists Accelerate Cutaneous Barrier Recovery and Prevent Epidermal Hyperplasia Induced by Barrier Disruption. Journal of Investigative Dermatology, 2002, 119, 1041-1047.	0.7	44
27	P2X Purinergic Receptor Antagonist Accelerates SkinBarrier Repair and Prevents Epidermal Hyperplasia Inducedby Skin Barrier Disruption. Journal of Investigative Dermatology, 2002, 119, 1034-1040.	0.7	88
28	Immunoreactivity of VR1 on Epidermal Keratinocyte of Human Skin. Biochemical and Biophysical Research Communications, 2001, 285, 1250-1252.	2.1	222
29	Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin $\hat{l}\pm8\hat{l}^21$ in the embryonic kidney. Journal of Cell Biology, 2001, 154, 447-458.	5.2	230
30	Functional Characterization of Structural Alterations in the Sequence of the Vasodilatory Peptide Maxadilan Yields a Pituitary Adenylate Cyclase-activating Peptide Type 1 Receptor-specific Antagonist. Journal of Biological Chemistry, 1999, 274, 23103-23110.	3.4	62
31	Utilization of a Soluble Integrin-Alkaline Phosphatase Chimera To Characterize Integrin α8β1 Receptor Interactions with Tenascin:  Murine α8β1 Binds to the RGD Site in Tenascin-C Fragments, but Not to Native Tenascin-C. Biochemistry, 1998, 37, 5464-5474.	2.5	55
32	Identification of Osteopontin as a Novel Ligand for the Integrin α8β1 and Potential Roles for This Integrin–Ligand Interaction in Kidney Morphogenesis. Molecular Biology of the Cell, 1998, 9, 1425-1435.	2.1	174
33	Integrin α8β1 Is Critically Important for Epithelial–Mesenchymal Interactions during Kidney Morphogenesis. Cell, 1997, 88, 603-613.	28.9	346
34	Structural Characterization and Location of Disulphide Linkages of a Potent Vasodilatory Peptide, Recombinant Maxadilan, by a Multiple Mass Spectrometric Approach. , 1996, 10, 641-648.		8