Winfried Barchet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11520639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006, 440, 233-236.	27.8	1,016
2	Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8459-8464.	7.1	1,013
3	Human T Regulatory Cells Can Use the Perforin Pathway to Cause Autologous Target Cell Death. Immunity, 2004, 21, 589-601.	14.3	844
4	Cyclic [G(2′,5′)pA(3′,5′)p] Is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GMF Synthase. Cell, 2013, 153, 1094-1107.	28.9	795
5	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	14.3	660
6	TLR9-Dependent Recognition of MCMV by IPC and DC Generates Coordinated Cytokine Responses that Activate Antiviral NK Cell Function. Immunity, 2004, 21, 107-119.	14.3	644
7	Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 2011, 12, 137-143.	14.5	640
8	Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood, 2004, 103, 1433-1437.	1.4	606
9	Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 11² production. Nature Immunology, 2010, 11, 63-69.	14.5	477
10	Structure-Function Analysis of STING Activation by c[G(2′,5′)pA(3′,5′)p] and Targeting by Antiviral DM Cell, 2013, 154, 748-762.	XAA 28.9	472
11	Antiviral immunity via RIC-I-mediated recognition of RNA bearing 5′-diphosphates. Nature, 2014, 514, 372-375.	27.8	459
12	Oxidative Damage of DNA Confers Resistance to Cytosolic Nuclease TREX1 Degradation and Potentiates STING-Dependent Immune Sensing. Immunity, 2013, 39, 482-495.	14.3	338
13	CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming. Immunity, 2017, 46, 205-219.	14.3	278
14	Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine, 2014, 20, 47-53.	30.7	256
15	Virus-induced Interferon $\hat{I}\pm$ Production by a Dendritic Cell Subset in the Absence of Feedback Signaling In Vivo. Journal of Experimental Medicine, 2002, 195, 507-516.	8.5	225
16	A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA. Immunity, 2015, 43, 41-51.	14.3	221
17	Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nature Immunology, 2015, 16, 1025-1033.	14.5	202
18	Cancer-Cell-Intrinsic cGAS Expression Mediates Tumor Immunogenicity. Cell Reports, 2019, 29, 1236-1248.e7.	6.4	187

WINFRIED BARCHET

#	Article	IF	CITATIONS
19	Middle East Respiratory Syndrome Coronavirus Accessory Protein 4a Is a Type I Interferon Antagonist. Journal of Virology, 2013, 87, 12489-12495.	3.4	179
20	Type I interferon-mediated autoinflammation due to DNase II deficiency. Nature Communications, 2017, 8, 2176.	12.8	164
21	Plasmacytoid dendritic cells—virus experts of innate immunity. Seminars in Immunology, 2005, 17, 253-261.	5.6	160
22	RIG-I detects infection with live <i>Listeria</i> by sensing secreted bacterial nucleic acids. EMBO Journal, 2012, 31, 4153-4164.	7.8	153
23	Translating nucleic acid-sensing pathways into therapies. Nature Reviews Immunology, 2015, 15, 529-544.	22.7	130
24	ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. Journal of Experimental Medicine, 2018, 215, 2868-2886.	8.5	122
25	Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. European Journal of Immunology, 2005, 35, 236-242.	2.9	109
26	Activation of Endothelial Toll-Like Receptor 3 Impairs Endothelial Function. Circulation Research, 2011, 108, 1358-1366.	4.5	107
27	Accessing the therapeutic potential of immunostimulatory nucleic acids. Current Opinion in Immunology, 2008, 20, 389-395.	5.5	104
28	Human Plasmacytoid Dendritic Cells Support Th17 Cell Effector Function in Response to TLR7 Ligation. Journal of Immunology, 2010, 184, 1159-1167.	0.8	96
29	Binding-Pocket and Lid-Region Substitutions Render Human STING Sensitive to the Species-Specific Drug DMXAA. Cell Reports, 2014, 8, 1668-1676.	6.4	87
30	Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2. Immunity, 2020, 52, 591-605.e6.	14.3	83
31	Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8+ T cellsin vivo. European Journal of Immunology, 2000, 30, 1356-1363.	2.9	78
32	RNA Recognition via TLR7 and TLR8. Handbook of Experimental Pharmacology, 2008, , 71-86.	1.8	77
33	Targeted Activation of RNA Helicase Retinoic Acid–Inducible Gene-I Induces Proimmunogenic Apoptosis of Human Ovarian Cancer Cells. Cancer Research, 2010, 70, 5293-5304.	0.9	77
34	Approaching the RNA ligand for RIGâ€ŀ?. Immunological Reviews, 2009, 227, 66-74.	6.0	73
35	The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 963-974.	2.9	69
36	RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells. PLoS ONE, 2013, 8, e62872.	2.5	68

WINFRIED BARCHET

#	Article	IF	CITATIONS
37	Selective and direct activation of human neutrophils but not eosinophils by Toll-like receptor 8. Journal of Allergy and Clinical Immunology, 2009, 123, 1026-1033.	2.9	66
38	Immunostimulatory Endogenous Nucleic Acids Drive the Lesional Inflammation in Cutaneous Lupus Erythematosus. Journal of Investigative Dermatology, 2017, 137, 1484-1492.	0.7	62
39	Suppressive oligodeoxynucleotides containing TTACGG motifs inhibit cGAS activation in human monocytes. European Journal of Immunology, 2018, 48, 605-611.	2.9	60
40	Antigen persistence and time of T-cell tolerization determine the efficacy of tolerization protocols for prevention of skin graft rejection. Nature Medicine, 1998, 4, 1015-1019.	30.7	56
41	Complement-induced regulatory T cells suppress T-cell responses but allow for dendritic-cell maturation. Blood, 2006, 107, 1497-1504.	1.4	55
42	SOCS1 and SOCS3 Target IRF7 Degradation To Suppress TLR7-Mediated Type I IFN Production of Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2018, 200, 4024-4035.	0.8	53
43	Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer. Oncotarget, 2015, 6, 16437-16448.	1.8	53
44	A Human In Vitro Whole Blood Assay to Predict the Systemic Cytokine Response to Therapeutic Oligonucleotides Including siRNA. PLoS ONE, 2013, 8, e71057.	2.5	51
45	cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites. Cell Host and Microbe, 2016, 20, 443-457.	11.0	46
46	Immunogenic cell death of human ovarian cancer cells induced by cytosolic poly(I:C) leads to myeloid cell maturation and activates NK cells. European Journal of Immunology, 2011, 41, 3028-3039.	2.9	40
47	Activation of Melanoma Differentiation-Associated Gene 5 Causes Rapid Involution of the Thymus. Journal of Immunology, 2009, 182, 6044-6050.	0.8	34
48	Higher activation of TLR9 in plasmacytoid dendritic cells by microbial DNA compared with self-DNA based on CpG-specific recognition of phosphodiester DNA. Journal of Leukocyte Biology, 2009, 86, 663-670.	3.3	31
49	Plasmacytoid Dendritic Cells: In Search of their Niche in Immune Responses. Immunologic Research, 2005, 32, 075-084.	2.9	27
50	Polyinosinic-Polycytidylic Acid Treatment of Friend Retrovirus-Infected Mice Improves Functional Properties of Virus-Specific T Cells and Prevents Virus-Induced Disease. Journal of Immunology, 2010, 185, 6179-6189.	0.8	27
51	Endothelial RIG-I activation impairs endothelial function. Biochemical and Biophysical Research Communications, 2012, 420, 66-71.	2.1	27
52	RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection. Molecular Therapy, 2017, 25, 2093-2103.	8.2	26
53	Human TLR8 Senses RNA From Plasmodium falciparum-Infected Red Blood Cells Which Is Uniquely Required for the IFN-Î ³ Response in NK Cells. Frontiers in Immunology, 2019, 10, 371.	4.8	26
54	Absence of cGAS-mediated type I IFN responses in HIV-1–infected T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19475-19486.	7.1	20

WINFRIED BARCHET

#	Article	IF	CITATIONS
55	Donor cell persistence and activation-induced unresponsiveness of peripheral CD8+ T cells. European Journal of Immunology, 2000, 30, 883-891.	2.9	19
56	Monocyte-Mediated Inhibition of TLR9-Dependent IFN-α Induction in Plasmacytoid Dendritic Cells Questions Bacterial DNA as the Active Ingredient of Bacterial Lysates. Journal of Immunology, 2010, 185, 7367-7373.	0.8	19
57	Characterization of Endogenous SERINC5 Protein as Anti-HIV-1 Factor. Journal of Virology, 2019, 93, .	3.4	17
58	<scp>MDA</scp> â€5 activation by cytoplasmic doubleâ€stranded <scp>RNA</scp> impairs endothelial function and aggravates atherosclerosis. Journal of Cellular and Molecular Medicine, 2016, 20, 1696-1705.	3.6	15
59	Nucleic Acid Adjuvants. Advances in Immunology, 2012, 114, 1-32.	2.2	12
60	NAB2 is a novel immune stimulator of MDA-5 that promotes a strong type I interferon response. Oncotarget, 2018, 9, 5641-5651.	1.8	7
61	Delivery with polycations extends the immunostimulant Ribomunyl® into a potent antiviral Toll-like receptor 7/8 agonist. Antiviral Therapy, 2011, 16, 751-758.	1.0	5
62	G-rich DNA-induced stress response blocks type-I-IFN but not CXCL10 secretion in monocytes. Scientific Reports, 2016, 6, 38405.	3.3	4
63	U-DCS: characterization of the first permanent human dendritic sarcoma cell line. Scientific Reports, 2020, 10, 21221.	3.3	2
64	Exonuclease TREX1 also Has a Sweet Tooth. Immunity, 2015, 43, 411-413.	14.3	1
65	The Function of Leukocyte Immunoglobulin-Like Receptors in Self-Tolerance, Viral Recognition, and Regulation of Adaptive Responses. , 0, , 301-312.		Ο