
Antonio Contestabile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11519910/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The history of the cholinergic hypothesis. Behavioural Brain Research, 2011, 221, 334-340.	2.2	319
2	Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Research Reviews, 2000, 32, 476-509.	9.0	309
3	Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neuroscience Letters, 2000, 281, 123-126.	2.1	226
4	Biochemical, Molecular and Epigenetic Mechanisms of Valproic Acid Neuroprotection. Current Molecular Pharmacology, 2009, 2, 95-109.	1.5	195
5	Reciprocal Interactions Between Microglia and Neurons: From Survival to Neuropathology. Reviews in the Neurosciences, 2002, 13, 221-42.	2.9	188
6	Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum, 2002, 1, 41-55.	2.5	180
7	Valproic Acid is Neuroprotective in the Rotenone Rat Model of Parkinson's Disease: Involvement of α-Synuclein. Neurotoxicity Research, 2010, 17, 130-141.	2.7	167
8	Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochemistry International, 2004, 45, 903-914.	3.8	149
9	Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. Journal of Neurochemistry, 2004, 82, 1282-1289.	3.9	128
10	Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Research, 1996, 728, 1-6.	2.2	115
11	Subchronic Rolipram Delivery Activates Hippocampal CREB and Arc, Enhances Retention and Slows Down Extinction of Conditioned Fear. Neuropsychopharmacology, 2006, 31, 278-286.	5.4	101
12	Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. European Journal of Neuroscience, 2000, 12, 3117-3123.	2.6	81
13	Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. Journal of Neurochemistry, 2002, 81, 218-228.	3.9	81
14	Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Progress in Neurobiology, 2008, 84, 317-328.	5.7	80
15	Brain Nitric Oxide and Its Dual Role in Neurodegeneration / Neuroprotection: Understanding Molecular Mechanisms to Devise Drug Approaches. Current Medicinal Chemistry, 2003, 10, 2147-2174.	2.4	79
16	Microglial cells protect cerebellar granule neurons from apoptosis: Evidence for reciprocal signaling. Glia, 2001, 36, 271-280.	4.9	78
17	Nitric Oxide Protects Neuroblastoma Cells from Apoptosis Induced by Serum Deprivation through cAMP-response Element-binding Protein (CREB) Activation. Journal of Biological Chemistry, 2002, 277, 49896-49902.	3.4	76
18	Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. Journal of Cell Science, 2004, 117, 4727-4737.	2.0	69

ANTONIO CONTESTABILE

#	Article	lF	CITATIONS
19	Choline acetyltransferase activity at different ages in brain of Ts65Dn mice, an animal model for Down's syndrome and related neurodegenerative diseases. Journal of Neurochemistry, 2006, 97, 515-526.	3.9	63
20	Neuroprotection of microglial conditioned medium on 6â€hydroxydopamineâ€induced neuronal death: role of transforming growth factor betaâ€2. Journal of Neurochemistry, 2009, 110, 545-556.	3.9	61
21	NMDA receptor-dependent CREB activation in survival of cerebellar granule cells duringin vivoandin vitrodevelopment. European Journal of Neuroscience, 2002, 16, 1490-1498.	2.6	59
22	The Place of Choline Acetyltransferase Activity Measurement in the "Cholinergic Hypothesis―of Neurodegenerative Diseases. Neurochemical Research, 2008, 33, 318-327.	3.3	56
23	Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opinion on Therapeutic Targets, 2016, 20, 627-640.	3.4	53
24	Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus, 2005, 15, 285-301.	1.9	52
25	Role of Nitric Oxide in Cerebellar Development and Function: Focus on Granule Neurons. Cerebellum, 2012, 11, 50-61.	2.5	51
26	Neurotoxicity of Polyamines and Pharmacological Neuroprotection in Cultures of Rat Cerebellar Granule Cells. Experimental Neurology, 1997, 148, 157-166.	4.1	49
27	Alphaâ€synuclein protects cerebellar granule neurons against 6â€hydroxydopamineâ€induced death. Journal of Neurochemistry, 2007, 103, 518-530.	3.9	49
28	Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immunochemical study in the rat. Brain Research, 2002, 933, 31-41.	2.2	47
29	Developmental effects of in vivo and in vitro inhibition of nitric oxide synthase in neurons. Brain Research, 1999, 839, 164-172.	2.2	37
30	Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. Journal of Cell Science, 2006, 119, 3161-3170.	2.0	35
31	Benefits of Caloric Restriction on Brain Aging and Related Pathological States: Understanding Mechanisms to Devise Novel Therapies. Current Medicinal Chemistry, 2009, 16, 350-361.	2.4	35
32	Characterization of ceramide-induced apoptotic death in cerebellar granule cells in culture. Neurochemistry International, 2001, 39, 11-18.	3.8	33
33	Overactivation of LPS-stimulated microglial cells by co-cultured neurons or neuron-conditioned medium. Journal of Neuroimmunology, 2006, 172, 104-111.	2.3	31
34	Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Current Neuropharmacology, 2012, 10, 303-310.	2.9	28
35	Histone Acetylation in Neurodevelopment. Current Pharmaceutical Design, 2013, 19, 5043-5050.	1.9	26
36	Neuron-Conditioned Media Differentially Affect the Survival of Activated or Unstimulated Microglia: Evidence for Neuronal Control on Apoptotic Elimination of Activated Microglia. Journal of Neuropathology and Experimental Neurology, 2003, 62, 351-362.	1.7	25

#	Article	IF	CITATIONS
37	Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Current Neuropharmacology, 2012, 10, 303-310.	2.9	25
38	Chronic Dietary Administration of Valproic Acid Protects Neurons of the Rat Nucleus Basalis Magnocellularis from Ibotenic Acid Neurotoxicity. Neurotoxicity Research, 2009, 15, 127-132.	2.7	24
39	Ribosome-inactivating Proteins from Plants as Agents for Suicide Transport and Immunolesioning in the Nervous System. European Journal of Neuroscience, 1993, 5, 1292-1301.	2.6	22
40	In vitro and in vivo toxicity of type 2 ribosome-inactivating proteins lanceolin and stenodactylin on glial and neuronal cells. NeuroToxicology, 2007, 28, 637-644.	3.0	22
41	Neuronal nitric oxide synthase is permanently decreased in the cerebellum of rats subjected to chronic neonatal blockade of N-methyl-d-aspartate receptors. Neuroscience Letters, 1998, 258, 1-4.	2.1	21
42	Developmental expression of the cell cycle and apoptosis controlling gene, Lot1, in the rat cerebellum and in cultures of cerebellar granule cells. Developmental Brain Research, 2003, 142, 193-202.	1.7	21
43	Chronic pre-explant blockade of the NMDA receptor affects survival of cerebellar granule cells explanted in vitro. Developmental Brain Research, 1997, 99, 112-117.	1.7	20
44	Chronic valproic acid administration impairs contextual memory and dysregulates hippocampal GSK-3Î ² in rats. Pharmacology Biochemistry and Behavior, 2013, 106, 8-15.	2.9	20
45	Simultaneous blockade of non-NMDA ionotropic receptors and NMDA receptor-associated ionophore partially protects hippocampal slices from protein synthesis impairment due to simulated ischemia. Hippocampus, 1995, 5, 91-97.	1.9	19
46	Toxicity of ricin and volkensin, two ribosome-inactivating proteins, to microglia, astrocyte, and neuron cultures. , 1997, 20, 203-209.		18
47	Nitric Oxide Control of Proliferation in Nerve Cells and in Tumor Cells of Nervous Origin. Current Pharmaceutical Design, 2010, 16, 440-450.	1.9	15
48	Sustained, long-lasting inhibition of nitric oxide synthase aggravates the neural damage in some models of excitotoxic brain injury. Brain Research Bulletin, 2001, 56, 29-35.	3.0	14
49	Topography of neurochemical alterations in the CNS of aged rats. International Journal of Developmental Neuroscience, 2001, 19, 109-116.	1.6	14
50	Ornithine Decarboxylase Activity During Development of Cerebellar Granule Neurons. Journal of Neurochemistry, 2002, 71, 1898-1904.	3.9	13
51	Selective alteration of DNA fragmentation and caspase activity in the spinal cord of aged rats and effect of dietary restriction. Brain Research, 2003, 992, 137-141.	2.2	13
52	Nitric Oxide Control of MYCN Expression and Multi Drug Resistance Genes in Tumours of Neural Origin. Current Pharmaceutical Design, 2010, 16, 431-439.	1.9	13
53	Zinc supplementation in rats impairs hippocampal-dependent memory consolidation and dampens post-traumatic recollection of stressful event. European Neuropsychopharmacology, 2016, 26, 1070-1082.	0.7	12
54	Alteration of neuronal nitric oxide synthase activity and expression in the cerebellum and the forebrain of microencephalic rats. Brain Research, 1998, 793, 54-60.	2.2	10

#	Article	IF	CITATIONS
55	Chronic neonatal NMDA blockade results in long-term cholinergic increase in the rat spinal cord. NeuroReport, 1994, 5, 2023-2025.	1.2	9
56	Antioxidant strategies for neurodegenerative diseases. Expert Opinion on Therapeutic Patents, 2001, 11, 573-585.	5.0	9
57	Neuroprotection of microglia conditioned media from apoptotic death induced by staurosporine and glutamate in cultures of rat cerebellar granule cells. Neuroscience Letters, 2008, 448, 74-78.	2.1	9
58	Differential Toxicity of Protease Inhibitors in Cultures of Cerebellar Granule Neurons. Experimental Neurology, 1998, 153, 335-341.	4.1	8
59	lschemic and excitotoxic damage to brain slices from normal and microencephalic rats. Neuroscience Letters, 1997, 233, 53-57.	2.1	7
60	Decreased excitotoxic sensitivity in the olfactory cortex of adult rats after neonatal NMDA blockade. NeuroReport, 1994, 5, 2141-2144.	1.2	4