
Adam C Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1151871/publications.pdf Version: 2024-02-01

ADAM C WILKINSON

#	Article	IF	CITATIONS
1	Hematopoietic stem cell gene editing and expansion: State-of-the-art technologies and recent applications. Experimental Hematology, 2022, 107, 9-13.	0.4	11
2	Immunological barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology, 2022, 22, 719-733.	22.7	22
3	Engineering human hematopoietic environments through ossicle and bioreactor technologies exploitation. Experimental Hematology, 2021, 94, 20-25.	0.4	9
4	Non-conditioned bone marrow chimeric mouse generation using culture-based enrichment of hematopoietic stem and progenitor cells. Nature Communications, 2021, 12, 3568.	12.8	13
5	Polyvinyl alcohol hydrolysis rate and molecular weight influence human and murine HSC activity ex vivo. Stem Cell Research, 2021, 56, 102531.	0.7	11
6	Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nature Communications, 2021, 12, 686.	12.8	67
7	Translational research for bone marrow failure patients. Experimental Hematology, 2021, , .	0.4	3
8	Long-term ex vivo expansion of mouse hematopoietic stem cells. Nature Protocols, 2020, 15, 628-648.	12.0	55
9	Single-cell lineage tracing approaches in hematology research: technical considerations. Experimental Hematology, 2020, 89, 26-36.	0.4	3
10	Haematopoietic stem cell self-renewal in vivo and ex vivo. Nature Reviews Genetics, 2020, 21, 541-554.	16.3	118
11	In vivo and ex vivo haematopoietic stem cell expansion. Current Opinion in Hematology, 2020, 27, 273-278.	2.5	2
12	Stabilizing hematopoietic stem cells in vitro. Current Opinion in Genetics and Development, 2020, 64, 1-5.	3.3	18
13	Lineage commitment of hematopoietic stem cells and progenitors: insights from recent single cell and lineage tracing technologies. Experimental Hematology, 2020, 88, 1-6.	0.4	21
14	Hope for hematological diseases. Science, 2020, 367, 1206-1206.	12.6	3
15	Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. ELife, 2020, 9, .	6.0	21
16	Biological implications of clonal hematopoiesis. Experimental Hematology, 2019, 77, 1-5.	0.4	21
17	Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature, 2019, 571, 117-121.	27.8	249
18	Use of polyvinyl alcohol for chimeric antigen receptor T-cell expansion. Experimental Hematology, 2019, 80, 16-20.	0.4	13

ADAM C WILKINSON

#	Article	IF	CITATIONS
19	Large-Scale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell, 2018, 22, 600-607.e4.	11.1	132
20	The hematopoietic stem cell diet. International Journal of Hematology, 2018, 107, 634-641.	1.6	24
21	Branched-chain amino acid metabolism in cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 64-70.	2.5	220
22	Changing concepts in hematopoietic stem cells. Science, 2018, 362, 895-896.	12.6	38
23	Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Experimental Hematology, 2018, 63, 12-16.e1.	0.4	30
24	Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method. Scientific Reports, 2017, 7, 40684.	3.3	22
25	An All-Recombinant Protein-Based Culture System Specifically Identifies Hematopoietic Stem Cell Maintenance Factors. Stem Cell Reports, 2017, 8, 500-508.	4.8	32
26	Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity. Cell Systems, 2017, 5, 319-331.	6.2	54
27	InÂVivo Generation of Engraftable Murine Hematopoietic Stem Cells by Gfi1b, c-Fos, and Gata2 Overexpression within Teratoma. Stem Cell Reports, 2017, 9, 1024-1033.	4.8	29
28	Establishment of mouse expanded potential stem cells. Nature, 2017, 550, 393-397.	27.8	223
29	Technical considerations for the use of CRISPR/Cas9 in hematology research. Experimental Hematology, 2017, 54, 4-11.	0.4	18
30	Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science, 2016, 354, 1152-1155.	12.6	147
31	Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nature Biotechnology, 2015, 33, 269-276.	17.5	352
32	Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium. Cell Reports, 2015, 12, 90-101.	6.4	154
33	Single-cell analyses of regulatory network perturbations using enhancer-targeting TALEs suggest novel roles for <i>PU.1</i> during haematopoietic specification. Development (Cambridge), 2014, 141, 4018-4030.	2.5	26
34	RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction. Cell Reports, 2013, 3, 116-127.	6.4	130
35	Single site-specific integration targeting coupled with embryonic stem cell differentiation provides a high-throughput alternative to in vivo enhancer analyses. Biology Open, 2013, 2, 1229-1238.	1.2	11
36	Transcriptional Regulation of Haematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 187-212.	1.6	47