Anand Gole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11518013/publications.pdf

Version: 2024-02-01

		201674	330143
37	7,062 citations	27	37
papers	citations	h-index	g-index
0.7	27	27	10474
37	37	37	10474
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small, 2005, 1, 325-327.	10.0	2,190
2	Seed-Mediated Synthesis of Gold Nanorods:Â Role of the Size and Nature of the Seed. Chemistry of Materials, 2004, 16, 3633-3640.	6.7	873
3	Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers:Â Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry, 2005, 77, 3261-3266.	6.5	628
4	Pepsinâ^'Gold Colloid Conjugates:  Preparation, Characterization, and Enzymatic Activity. Langmuir, 2001, 17, 1674-1679.	3.5	514
5	Targeted Photothermal Lysis of the Pathogenic Bacteria, <i>Pseudomonas aeruginosa</i> , with Gold Nanorods. Nano Letters, 2008, 8, 302-306.	9.1	467
6	Polyelectrolyte-Coated Gold Nanorods:  Synthesis, Characterization and Immobilization. Chemistry of Materials, 2005, 17, 1325-1330.	6.7	387
7	Studies on the Reversible Aggregation of Cysteine-Capped Colloidal Silver Particles Interconnected via Hydrogen Bonds. Langmuir, 2001, 17, 6262-6268.	3. 5	220
8	Deposition of CTAB-Terminated Nanorods on Bacteria to Form Highly Conducting Hybrid Systems. Journal of the American Chemical Society, 2005, 127, 17600-17601.	13.7	190
9	Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures. MRS Bulletin, 2005, 30, 349-355.	3.5	169
10	Azide-Derivatized Gold Nanorods:  Functional Materials for "Click―Chemistry. Langmuir, 2008, 24, 266-272.	3.5	163
11	Biotinâ^'Streptavidin-Induced Aggregation of Gold Nanorods:Â Tuning Rodâ^'Rod Orientation. Langmuir, 2005, 21, 10756-10762.	3.5	156
12	On the Preparation, Characterization, and Enzymatic Activity of Fungal Proteaseâ^'Gold Colloid Bioconjugates. Bioconjugate Chemistry, 2001, 12, 684-690.	3.6	133
13	Immobilization of Gold Nanorods onto Acid-Terminated Self-Assembled Monolayers via Electrostatic Interactions. Langmuir, 2004, 20, 7117-7122.	3.5	122
14	Electrostatically Controlled Organization of Carboxylic Acid Derivatized Colloidal Silver Particles on Amine-Terminated Self-Assembled Monolayers. Chemistry of Materials, 2000, 12, 1234-1239.	6.7	104
15	Iron Oxide Coated Gold Nanorods: Synthesis, Characterization, and Magnetic Manipulation. Langmuir, 2008, 24, 6232-6237.	3.5	77
16	One pot synthesis of magnetite–silica nanocomposites: applications as tags, entrapment matrix and in water purification. Journal of Materials Chemistry A, 2013, 1, 2022-2029.	10.3	64
17	Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chemical Communications, 2000, , 297-298.	4.1	59
18	Fabrication, Characterization, and Enzymatic Activity of Encapsulated Fungal Proteaseâ^'Fatty Lipid Biocomposite Films. Analytical Chemistry, 2000, 72, 4301-4309.	6.5	54

#	Article	IF	CITATIONS
19	Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloids and Surfaces B: Biointerfaces, 2002, 25, 129-138.	5.0	52
20	Langmuirâ-'Blodgett Thin Films of Quantum Dots: Synthesis, Surface Modification, and Fluorescence Resonance Energy Transfer (FRET) Studies. Langmuir, 2008, 24, 8181-8186.	3.5	47
21	Hybridization of DNA by Sequential Immobilization of Oligonucleotides at the Airâ^'Water Interface. Langmuir, 2000, 16, 9142-9146.	3.5	43
22	Time-dependent complexation of glucose-reduced gold nanoparticles with octadecylamine Langmuir monolayers. Journal of Colloid and Interface Science, 2004, 270, 133-139.	9.4	42
23	Enhanced Temperature and pH Stability of Fatty Amineâ^'Endoglucanase Composites:  Fabrication, Substrate Protection, and Biological Activity. Langmuir, 2001, 17, 5964-5970.	3.5	34
24	Time-Dependent Complexation of Cysteine-Capped Gold Nanoparticles with Octadecylamine Langmuir Monolayers at the Airâ ² Water Interface. Langmuir, 2003, 19, 9147-9154.	3.5	34
25	Lamellar Langmuir–Blodgett films of hydrophobized colloidal gold nanoparticles by organization at the air–water interface. Thin Solid Films, 2001, 384, 125-131.	1.8	31
26	One-pot synthesis of silica-coated magnetic plasmonic tracer nanoparticles. Chemical Communications, 2008, , 6140.	4.1	29
27	Magnetite–Silica–Gold Nanocomposite: One-Pot Single-Step Synthesis and Its Application for Solvent-Free Oxidation of Benzyl Alcohol. Journal of Physical Chemistry C, 2015, 119, 14214-14223.	3.1	28
28	Formation of Patterned, Heterocolloidal Nanoparticle Thin Films. Langmuir, 2000, 16, 3553-3556.	3.5	27
29	Multilayer Langmuir–Blodgett assemblies of hydrophobized CdS nanoparticles by organization at the air–water interface. Journal of Materials Chemistry, 2000, 10, 1389-1393.	6.7	25
30	Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance. Journal of Colloid and Interface Science, 2016, 483, 249-260.	9.4	25
31	A new method for the generation of patterned protein films by encapsulation in arrays of thermally evaporated lipids. Biotechnology and Bioengineering, 2001, 74, 172-178.	3.3	20
32	Protein-Friendly Intercalation of Cytochrome c and Hemoglobin into Thermally Evaporated Anionic and Cationic Lipid Films: A New Approach Based on Diffusion from Solution. Langmuir, 2001, 17, 5646-5656.	3.5	18
33	Protein diffusion into thermally evaporated lipid films: role of protein charge/mass ratio. Colloids and Surfaces B: Biointerfaces, 2003, 28, 209-214.	5.0	12
34	Studies on Interaction between Similarly Charged Polyelectrolyte: Fatty Acid System. Langmuir, 2003, 19, 9321-9327.	3.5	12
35	Patterned assembly of Yarrowia lipolytica yeast cells onto thermally evaporated octadecylamine films. Colloids and Surfaces B: Biointerfaces, 2002, 25, 363-368.	5.0	8
36	Enhancing the Diffusion Rate of Cytochromecinto Fatty Acid Films by Preordering the Lipid Film. Langmuir, 2001, 17, 8249-8253.	3.5	3

 #	Article	IF	CITATIONS
37	Quasi-linear Assemblies of Silver Nanoparticles by Highly Localized Anodic Dissolution of Copper in the Hydrosol. Journal of Nanoscience and Nanotechnology, 2002, 2, 147-150.	0.9	2