
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11513237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A stress-reduced passaging technique improves the viability of human pluripotent cells. Cell Reports Methods, 2022, 2, 100155.	2.9	2
2	Multi-omics approach reveals posttranscriptionally regulated genes are essential for human pluripotent stem cells. IScience, 2022, 25, 104289.	4.1	5
3	Konnichiwa: Japanese scientists and their struggle to speak English. EMBO Reports, 2021, 22, e52558.	4.5	1
4	The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency. PLoS Genetics, 2021, 17, e1009587.	3.5	20
5	Expression dynamics of HAND1/2 in inÂvitro human cardiomyocyte differentiation. Stem Cell Reports, 2021, 16, 1906-1922.	4.8	9
6	First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regenerative Therapy, 2021, 18, 321-333.	3.0	74
7	Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells. Molecular Therapy - Nucleic Acids, 2021, 26, 1107-1114.	5.1	35
8	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	6.4	21
9	Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell, 2020, 27, 523-531.	11.1	602
10	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
11	Induced 2C Expression and Implantation-Competent Blastocyst-like Cysts from Primed Pluripotent Stem Cells. Stem Cell Reports, 2019, 13, 485-498.	4.8	67
12	Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circulation Research, 2019, 125, 653-658.	4.5	53
13	Base-Resolution Methylome of Retinal Pigment Epithelial Cells Used in the First Trial of Human Induced Pluripotent Stem Cell-Based Autologous Transplantation. Stem Cell Reports, 2019, 13, 761-774.	4.8	20
14	Application of induced pluripotent stem cells to primary immunodeficiency diseases. Experimental Hematology, 2019, 71, 43-50.	0.4	9
15	Generation of a human induced pluripotent stem cell line, BRCi001-A, derived from a patient with mucopolysaccharidosis type I. Stem Cell Research, 2019, 36, 101406.	0.7	4
16	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	28.8	230
17	Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. Stem Cells, 2019, 37, 6-13.	3.2	98
18	MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Reports, 2018, 23, 361-375.	6.4	23

#	Article	IF	CITATIONS
19	Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA Journal, 2018, 1, 6-14.	0.8	9
20	Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency. Cell Metabolism, 2017, 25, 1103-1117.e6.	16.2	67
21	Induced Pluripotent Stem Cells 10 Years Later. Circulation Research, 2017, 120, 1958-1968.	4.5	218
22	The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	182
23	New Models for Therapeutic Innovation from Japan. EBioMedicine, 2017, 18, 3-4.	6.1	8
24	Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 2017, 376, 1038-1046.	27.0	1,121
25	<i>Nat1</i> promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 340-345.	7.1	81
26	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	46.4	1,076
27	MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nature Communications, 2017, 8, 385.	12.8	178
28	Enhanced Therapeutic Effects of Human iPS Cell Derived-Cardiomyocyte by Combined Cell-Sheets with Omental Flap Technique in Porcine Ischemic Cardiomyopathy Model. Scientific Reports, 2017, 7, 8824.	3.3	90
29	Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Laboratory Investigation, 2017, 97, 1133-1141.	3.7	33
30	Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells. Nature Communications, 2017, 8, 1616.	12.8	7
31	Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins. Stem Cells International, 2016, 2016, 1-10.	2.5	19
32	Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia. PLoS ONE, 2016, 11, e0164795.	2.5	55
33	Screening of Human cDNA Library Reveals Two differentiation-Related Genes,HHEXandHLX, as Promoters of Early Phase Reprogramming toward Pluripotency. Stem Cells, 2016, 34, 2661-2669.	3.2	8
34	Efficient CRISPR/Cas9â€Based Genome Engineering in Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2016, 88, 21.4.1-21.4.23.	3.5	20
35	MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 2016, 6, 32532.	3.3	82
36	Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell, 2016, 19, 341-354.	11.1	179

#	Article	IF	CITATIONS
37	Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Scientific Reports, 2016, 6, 30013.	3.3	34
38	Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12478-12483.	7.1	38
39	Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Scientific Reports, 2016, 6, 19111.	3.3	150
40	BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13057-13062.	7.1	75
41	When Myc's asleep, embryonic stem cells are dormant. EMBO Journal, 2016, 35, 801-802.	7.8	2
42	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	37.0	684
43	Understanding Intracellular Signaling Advances Cardiac Reprogramming Technology Toward Clinical Applications. Circulation Research, 2016, 118, 377-378.	4.5	0
44	Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies. Regenerative Therapy, 2016, 4, 36-47.	3.0	48
45	Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS ONE, 2016, 11, e0165268.	2.5	22
46	SOX2 O-ClcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. ELife, 2016, 5, e10647.	6.0	60
47	Practical Integrationâ€Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells. Current Protocols in Human Genetics, 2015, 87, 21.2.1-21.2.21.	3.5	13
48	Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell, 2015, 16, 699-711.	11.1	191
49	A study on ensuring the quality and safety of pharmaceuticals and medical devices derived from processing of autologous human induced pluripotent stem(-like) cells. Regenerative Therapy, 2015, 2, 81-94.	3.0	15
50	A study on ensuring the quality and safety of pharmaceuticals and medical devices derived from processing of allogeneic human induced pluripotent stem(-Like) cells. Regenerative Therapy, 2015, 2, 95-108.	3.0	14
51	Development of a global network of induced pluripotent stem cell haplobanks. Regenerative Medicine, 2015, 10, 235-238.	1.7	45
52	Robust InÂVitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 178-194.	11.1	428
53	KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency. Stem Cell Reports, 2015, 4, 727-743.	4.8	35
54	Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4666-4671.	7.1	43

#	Article	IF	CITATIONS
55	Direct Cardiac Reprogramming. Circulation Research, 2015, 116, 1378-1391.	4.5	118
56	From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annual Review of Genetics, 2015, 49, 47-70.	7.6	111
57	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	2.5	94
58	Inducible Transgene Expression in Human iPS Cells Using Versatile All-in-One piggyBac Transposons. Methods in Molecular Biology, 2015, 1357, 111-131.	0.9	84
59	Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Translational Medicine, 2015, 4, 980-992.	3.3	130
60	Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015, 4, 143-154.	4.8	459
61	Delivery of Full-Length Factor VIII Using a piggyBac Transposon Vector to Correct a Mouse Model of Hemophilia A. PLoS ONE, 2014, 9, e104957.	2.5	44
62	Rethinking Differentiation: Stem Cells, Regeneration, and Plasticity. Cell, 2014, 157, 110-119.	28.9	217
63	Premature Termination of Reprogramming InÂVivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell, 2014, 156, 663-677.	28.9	368
64	Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nature Communications, 2014, 5, 3678.	12.8	115
65	iPS cells: a game changer for future medicine. EMBO Journal, 2014, 33, 409-417.	7.8	374
66	The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes. Cell Stem Cell, 2014, 14, 40-52.	11.1	200
67	Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature, 2014, 507, 99-103.	27.8	75
68	Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12426-12431.	7.1	220
69	Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nature Biotechnology, 2014, 32, 724-726.	17.5	62
70	Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia. Stem Cell Reports, 2014, 3, 269-281.	4.8	106
71	Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice. Stem Cell Reports, 2014, 3, 242-249.	4.8	131
72	iPS cell technologies: significance and applications to CNS regeneration and disease. Molecular Brain, 2014, 7, 22.	2.6	204

#	Article	IF	CITATIONS
73	Induced Pluripotent Stem Cells. , 2014, , 375-385.		1
74	Perspectives for Induced Pluripotent Stem Cell Technology. Circulation Research, 2014, 114, 505-510.	4.5	12
75	The fate of cell reprogramming. Nature Methods, 2014, 11, 1006-1008.	19.0	22
76	Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2014, 14, 535-548.	11.1	275
77	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2014, 2, 648-661.	4.8	100
78	A Chemical Probe that Labels Human Pluripotent Stem Cells. Cell Reports, 2014, 6, 1165-1174.	6.4	42
79	Induction of pluripotency by defined factors. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 83-96.	3.8	30
80	The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 7283.	3.3	20
81	Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells. Scientific Reports, 2014, 4, 6996.	3.3	62
82	A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 3594.	3.3	511
83	Donor Recruitment and Eligibility Criteria for HLA-Homozygous iPS Cell Bank in Japan. Pancreatic Islet Biology, 2014, , 67-76.	0.3	12
84	Efficient and Rapid Induction of Human iPSCs/ESCs into Nephrogenic Intermediate Mesoderm Using Small Molecule-Based Differentiation Methods. PLoS ONE, 2014, 9, e84881.	2.5	105
85	Generation and Characterization of Induced Pluripotent Stem Cells from Aid-Deficient Mice. PLoS ONE, 2014, 9, e94735.	2.5	17
86	Global Splicing Pattern Reversion during Somatic Cell Reprogramming. Cell Reports, 2013, 5, 357-366.	6.4	53
87	Human Induced Pluripotent Stem Cell–Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology, 2013, 133, 1479-1488.	0.7	72
88	Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming. Molecular Cell, 2013, 52, 805-818.	9.7	96
89	Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12172-12179.	7.1	117
90	Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet Journal of Rare Diseases, 2013, 8, 190.	2.7	101

#	Article	IF	CITATIONS
91	Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Communications, 2013, 4, 1367.	12.8	266
92	Rapid and Deep Profiling of Human Induced Pluripotent Stem Cell Proteome by One-shot NanoLC–MS/MS Analysis with Meter-scale Monolithic Silica Columns. Journal of Proteome Research, 2013, 12, 214-221.	3.7	55
93	Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120292.	4.0	107
94	Steps Toward Safe Cell Therapy Using Induced Pluripotent Stem Cells. Circulation Research, 2013, 112, 523-533.	4.5	371
95	Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Reports, 2013, 1, 283-292.	4.8	233
96	Toward the Development of a Global Induced Pluripotent Stem Cell Library. Cell Stem Cell, 2013, 13, 382-384.	11.1	225
97	Generation of Naive-Like Porcine-Induced Pluripotent Stem Cells Capable of Contributing to Embryonic and Fetal Development. Stem Cells and Development, 2013, 22, 473-482.	2.1	124
98	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	11.1	652
99	An Efficient Nonviral Method to Generate Integration-Free Human-Induced Pluripotent Stem Cells from Cord Blood and Peripheral Blood Cells. Stem Cells, 2013, 31, 458-466.	3.2	582
100	Induced Pluripotent Stem Cells. , 2013, , 227-235.		2
101	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
102	To Be Immunogenic, or Not to Be: That's the iPSC Question. Cell Stem Cell, 2013, 12, 385-386.	11.1	75
103	Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells. Scientific Reports, 2013, 3, 1978.	3.3	40
104	The Winding Road to Pluripotency (Nobel Lecture). Angewandte Chemie - International Edition, 2013, 52, 13900-13909.	13.8	25
105	Induced pluripotent stem cells in medicine and biology. Development (Cambridge), 2013, 140, 2457-2461.	2.5	220
106	Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188lr2.	12.4	5
107	Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16492-16497.	7.1	81
108	Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20569-20574.	7.1	206

#	Article	IF	CITATIONS
109	Ultrastructural Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Long-Term Culture. Circulation Journal, 2013, 77, 1307-1314.	1.6	258
110	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
111	Bioengineered Myocardium Derived from Induced Pluripotent Stem Cells Improves Cardiac Function and Attenuates Cardiac Remodeling Following Chronic Myocardial Infarction in Rats. Stem Cells Translational Medicine, 2012, 1, 430-437.	3.3	77
112	Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12538-12543.	7.1	277
113	An Emerging Strategy of Gene Therapy for Cardiac Disease. Circulation Research, 2012, 111, 1108-1110.	4.5	10
114	Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. DMM Disease Models and Mechanisms, 2012, 5, 220-230.	2.4	264
115	Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012, 10, 678-684.	11.1	692
116	Labor Pains of New Technology. Circulation Research, 2012, 111, 3-4.	4.5	12
117	Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood, 2012, 120, 1299-1308.	1.4	61
118	Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertility and Sterility, 2012, 97, 1250-1259.	1.0	48
119	Human Induced Pluripotent Stem Cell Generation. , 2012, , 143-163.		1
120	Integration-Free Method for the Generation of Human Induced Pluripotent Stem Cells. , 2012, , 165-173.		0
121	Methods for Evaluating Human Induced Pluripotent Stem Cells. , 2012, , 175-184.		0
122	Pre-Evaluated Safe Human iPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity. PLoS ONE, 2012, 7, e52787.	2.5	266
123	Function of Myc for Generation of Induced Pluripotent Stem Cells. , 2012, , 79-85.		2
124	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	12.4	465
125	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	37.0	31
126	Derivation Conditions Impact X-Inactivation Status in Female Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 91-99.	11.1	99

#	Article	IF	CITATIONS
127	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	17.5	509
128	Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Research, 2011, 21, 1551-1563.	12.0	88
129	iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 327-332.	1.9	152
130	The Nomenclature System Should Be Sustainable, but Also Practical. Cell Stem Cell, 2011, 8, 606-607.	11.1	2
131	Induced Pluripotent Stem Cells. , 2011, , 187-205.		0
132	Anti-AÎ ² Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease. PLoS ONE, 2011, 6, e25788.	2.5	156
133	Induced Pluripotent Stem Cells. , 2011, , 241-252.		2
134	Induced Pluripotent Stem Cells. , 2011, , 203-215.		1
135	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e16182.	2.5	102
136	ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency. PLoS ONE, 2011, 6, e20461.	2.5	18
137	Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression. PLoS ONE, 2011, 6, e23657.	2.5	272
138	Integration-Free iPS Cells Engineered Using Human Artificial Chromosome Vectors. PLoS ONE, 2011, 6, e25961.	2.5	66
139	A more efficient method to generate integration-free human iPS cells. Nature Methods, 2011, 8, 409-412.	19.0	1,736
140	Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 2011, 474, 225-229.	27.8	354
141	Modeling familial Alzheimer's disease with induced pluripotent stem cells. Human Molecular Genetics, 2011, 20, 4530-4539.	2.9	527
142	Glis1, a unique pro-reprogramming factor, may facilitate clinical applications of iPSC technology. Cell Cycle, 2011, 10, 3613-3614.	2.6	21
143	Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2198-2207.	4.0	225
144	Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16825-16830.	7.1	473

#	Article	IF	CITATIONS
145	Essential Roles of ECAT15-2/Dppa2 in Functional Lung Development. Molecular and Cellular Biology, 2011, 31, 4366-4378.	2.3	43
146	Immunogenicity of Induced Pluripotent Stem Cells. Circulation Research, 2011, 109, 720-721.	4.5	111
147	Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A. PLoS ONE, 2011, 6, e16734.	2.5	116
148	Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular Reproduction and Development, 2010, 77, 802-811.	2.0	76
149	Induction of pluripotency by defined factors. Experimental Cell Research, 2010, 316, 2565-2570.	2.6	77
150	Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010, 465, 704-712.	27.8	694
151	Genomeâ€wide DNA methylation profile of tissueâ€dependent and differentially methylated regions (Tâ€DMRs) residing in mouse pluripotent stem cells. Genes To Cells, 2010, 15, 607-618.	1.2	30
152	Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 2010, 5, 418-428.	12.0	200
153	miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging, 2010, 2, 415-431.	3.1	217
154	Induced pluripotent stem cell–derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. Journal of Clinical Investigation, 2010, 120, 3120-3126.	8.2	168
155	Gingival Fibroblasts as a Promising Source of Induced Pluripotent Stem Cells. PLoS ONE, 2010, 5, e12743.	2.5	138
156	Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovascular Research, 2010, 88, 314-323.	3.8	66
157	Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12704-12709.	7.1	489
158	Recent Stem Cell Advances: Induced Pluripotent Stem Cells for Disease Modeling and Stem Cell–Based Regeneration. Circulation, 2010, 122, 80-87.	1.6	166
159	Transient activation of <i>c-MYC</i> expression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Experimental Medicine, 2010, 207, 2817-2830.	8.5	295
160	Reprogramming of Somatic Cells to Pluripotency. Advances in Experimental Medicine and Biology, 2010, 695, 215-224.	1.6	20
161	Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB Journal, 2010, 24, 2245-2253.	0.5	162
162	Complete Genetic Correction of iPS Cells From Duchenne Muscular Dystrophy. Molecular Therapy, 2010, 18, 386-393.	8.2	238

#	Article	IF	CITATIONS
163	Patient-Specific Pluripotent Stem Cells Become Even More Accessible. Cell Stem Cell, 2010, 7, 1-2.	11.1	88
164	Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14152-14157.	7.1	351
165	Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis, 2010, 212, 42-47.	0.8	42
166	Transient activation ofc-MYCexpression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Cell Biology, 2010, 191, i11-i11.	5.2	1
167	Gi-Coupled GPCR Signaling Controls the Formation and Organization of Human Pluripotent Colonies. PLoS ONE, 2009, 4, e7780.	2.5	26
168	Induction and Isolation of Vascular Cells From Human Induced Pluripotent Stem Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1100-1103.	2.4	183
169	Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells. DNA Research, 2009, 16, 73-80.	3.4	38
170	Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells. FEBS Letters, 2009, 583, 1029-1033.	2.8	140
171	Orderly hematopoietic development of induced pluripotent stem cells via Flkâ€1 ⁺ hemoangiogenic progenitors. Journal of Cellular Physiology, 2009, 221, 367-377.	4.1	41
172	Characterization of Dendritic Cells and Macrophages Generated by Directed Differentiation from Mouse Induced Pluripotent Stem Cells. Stem Cells, 2009, 27, 1021-1031.	3.2	107
173	Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes To Cells, 2009, 14, 683-694.	1.2	136
174	Efficient reprogramming of human and mouse primary extraâ€embryonic cells to pluripotent stem cells. Genes To Cells, 2009, 14, 1395-1404.	1.2	88
175	Elite and stochastic models for induced pluripotent stem cell generation. Nature, 2009, 460, 49-52.	27.8	477
176	Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 2009, 460, 1132-1135.	27.8	1,220
177	Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27, 743-745.	17.5	811
178	Ekiden to iPS Cells. Nature Medicine, 2009, 15, 1145-1148.	30.7	21
179	Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nature Reviews Genetics, 2009, 10, 878-883.	16.3	96
180	A Fresh Look at iPS Cells. Cell, 2009, 137, 13-17.	28.9	636

#	Article	IF	CITATIONS
181	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	28.9	904
182	In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 2009, 385, 497-502.	2.1	219
183	The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 2009, 387, 482-488.	2.1	160
184	Broader Implications of Defining Standards for the Pluripotency of iPSCs. Cell Stem Cell, 2009, 4, 200-201.	11.1	111
185	Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 5, 237-241.	11.1	687
186	Generation of retinal cells from mouse and human induced pluripotent stem cells. Neuroscience Letters, 2009, 458, 126-131.	2.1	402
187	Generation and Characterization of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2009, 9, Unit 4A.2.	3.0	114
188	ERas is Expressed in Primate Embryonic Stem Cells but not Related to Tumorigenesis. Cell Transplantation, 2009, 18, 381-389.	2.5	15
189	1. Possibility of IPS Cells (-induced Pluripotent Stem Cell) and Its Challenge. The Journal of the Japanese Society of Internal Medicine, 2009, 98, 2141-2145.	0.0	0
190	Transplantation of mouse induced pluripotent stem cells into the cochlea. NeuroReport, 2009, 20, 1250-1254.	1.2	96
191	Human Induced Pluripotent Stem Cells on Autologous Feeders. PLoS ONE, 2009, 4, e8067.	2.5	91
192	Reconstruction of Nuclear Reprogramming by Defined Factors. , 2009, , 239-242.		0
193	A New Path: Induced Pluripotent Stem Cells. , 2009, , xxi-xxii.		0
194	Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science, 2008, 321, 699-702.	12.6	967
195	Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008, 26, 101-106.	17.5	2,583
196	Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008, 322, 949-953.	12.6	1,857
197	Directed and Systematic Differentiation of Cardiovascular Cells From Mouse Induced Pluripotent Stem Cells. Circulation, 2008, 118, 498-506.	1.6	465
198	Pluripotency and nuclear reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2079-2087.	4.0	136

#	Article	IF	CITATIONS
199	ä≌å·¥å≌f1⁄2性å11ç~èfžã®æ¨1ç«‹ãë展望. Kagaku To Seibutsu, 2008, 46, 531-538.	0.0	Ο
200	Recent advance in induced pluripotent stem cells. Inflammation and Regeneration, 2008, 28, 510-515.	3.7	0
201	Specific Role of the Truncated βIV-Spectrin Σ6 in Sodium Channel Clustering at Axon Initial Segments and Nodes of Ranvier. Journal of Biological Chemistry, 2007, 282, 6548-6555.	3.4	35
202	Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells. Cell Stem Cell, 2007, 1, 39-49.	11.1	704
203	New Advances in iPS Cell Research Do Not Obviate the Need for Human Embryonic Stem Cells. Cell Stem Cell, 2007, 1, 367-368.	11.1	87
204	Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007, 131, 861-872.	28.9	17,969
205	Reprogramming somatic cells towards pluripotency by defined factors. Current Opinion in Biotechnology, 2007, 18, 467-473.	6.6	103
206	Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2007, 2, 3081-3089.	12.0	945
207	Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448, 313-317.	27.8	4,019
208	<i>Drosophila NAT1</i> , a homolog of the vertebrate translational regulator <i>NAT1/DAP5/p97</i> , is required for embryonic germband extension and metamorphosis. Development Growth and Differentiation, 2007, 49, 623-634.	1.5	17
209	Intracellular Signaling Pathways Regulating Pluripotency of Embryonic Stem Cells. Current Stem Cell Research and Therapy, 2006, 1, 103-111.	1.3	108
210	Identification and targeted disruption of the mouse gene encoding ESG1 (PH34/ECAT2/DPPA5). BMC Developmental Biology, 2006, 6, 11.	2.1	35
211	Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Developmental Biology, 2006, 6, 34.	2.1	112
212	Esg1, expressed exclusively in preimplantation embryos, germline, and embryonic stem cells, is a putative RNA-binding protein with broad RNA targets. Development Growth and Differentiation, 2006, 48, 381-390.	1.5	33
213	Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006, 126, 663-676.	28.9	22,649
214	Utilization of Digital Differential Display to Identify Novel Targets of Oct3/4. , 2006, 329, 223-232.		6
215	Identification of Genes Involved in Tumor-Like Properties of Embryonic Stem Cells. , 2006, 329, 449-458.		32
216	Distinct Signaling Events Downstream of mTOR Cooperate To Mediate the Effects of Amino Acids and Insulin on Initiation Factor 4E-Binding Proteins. Molecular and Cellular Biology, 2005, 25, 2558-2572.	2.3	194

#	Article	IF	CITATIONS
217	Differential Roles for Sox15 and Sox2 in Transcriptional Control in Mouse Embryonic Stem Cells*. Journal of Biological Chemistry, 2005, 280, 24371-24379.	3.4	105
218	Differential Membrane Localization of ERas and Rheb, Two Ras-related Proteins Involved in the Phosphatidylinositol 3-Kinase/mTOR Pathway. Journal of Biological Chemistry, 2005, 280, 32768-32774.	3.4	90
219	Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics, 2005, 85, 360-371.	2.9	54
220	Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. Journal of Cell Science, 2004, 117, 5681-5686.	2.0	101
221	mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Molecular and Cellular Biology, 2004, 24, 6710-6718.	2.3	562
222	Reactivation of the Paternal X Chromosome in Early Mouse Embryos. Science, 2004, 303, 666-669.	12.6	475
223	Inhibition of nuclear factor-lºB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney International, 2003, 63, 306-314.	5.2	47
224	Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature, 2003, 423, 541-545.	27.8	305
225	The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell, 2003, 113, 631-642.	28.9	2,892
226	Fbx15 Is a Novel Target of Oct3/4 but Is Dispensable for Embryonic Stem Cell Self-Renewal and Mouse Development. Molecular and Cellular Biology, 2003, 23, 2699-2708.	2.3	252
227	Activation of transcription factors AP-1 and NF-κB in chronic cyclosporine A nephrotoxicity: role in beneficial effects of magnesium supplementation1. Transplantation, 2003, 75, 1040-1044.	1.0	34
228	Magnesium supplementation prevents experimental chronic cyclosporine a nephrotoxicity via renin-angiotensin system independent mechanism Transplantation, 2002, 74, 784-791.	1.0	53
229	ROLE OF HYPOMAGNESEMIA IN CHRONIC CYCLOSPORINE NEPHROPATHY1. Transplantation, 2002, 73, 340-347.	1.0	52
230	Effects of Nitric Oxide Scavenger, Carboxy-PTIO on Endotoxin-Induced Alterations in Systemic Hemodynamics in Rats. The Japanese Journal of Pharmacology, 2000, 82, 261-264.	1.2	13
231	Evolution, Structure, and Expression of GNPI/Oscillin Orthologous Genes. Genomics, 2000, 68, 179-186.	2.9	9
232	Contribution of Extracellular Signal-Regulated Kinase to Angiotensin II–Induced Transforming Growth Factor-β1 Expression in Vascular Smooth Muscle Cells. Hypertension, 1999, 34, 126-131.	2.7	55
233	Effects of Activation of Renal Adenosine A2 Receptor on Renal Function and Renin Release in Dogs. The Japanese Journal of Pharmacology, 1999, 80, 173-176.	1.2	11
234	No Participation of Adenosine A1 Receptor in Acute Nephrotoxicity by 4-Pentenoic Acid Administration in Dogs. The Japanese Journal of Pharmacology, 1999, 80, 223-228.	1.2	0

#	Article	IF	CITATIONS
235	The Human Gene Encoding the Lectin-Type Oxidized LDL Receptor (OLR1) Is a Novel Member of the Natural Killer Gene Complex with a Unique Expression Profile. Genomics, 1998, 54, 191-199.	2.9	78
236	Angiotensin Blockade Inhibits Activation of Mitogen-Activated Protein Kinases in Rat Balloon-Injured Artery. Circulation, 1998, 97, 1731-1737.	1.6	114
237	Differential Activation of Cardiac c-Jun Amino-Terminal Kinase and Extracellular Signal-Regulated Kinase in Angiotensin Il–Mediated Hypertension. Circulation Research, 1998, 83, 752-760.	4.5	87
238	Low Expression of the Apolipoprotein B mRNA–Editing Transgene in Mice Reduces LDL Levels but Does Not Cause Liver Dysplasia or Tumors. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1013-1020.	2.4	29
239	Cardiac Mitogen-Activated Protein Kinase Activities Are Chronically Increased in Stroke-Prone Hypertensive Rats. Hypertension, 1998, 31, 50-56.	2.7	55
240	Extracellular Signal-Regulated Kinase and c-Jun NH2-Terminal Kinase Activities Are Continuously and Differentially Increased in Aorta of Hypertensive Rats. Biochemical and Biophysical Research Communications, 1997, 236, 199-204.	2.1	40
241	Biosynthesis of Apolipoprotein B48-containing Lipoproteins. Journal of Biological Chemistry, 1996, 271, 2353-2356.	3.4	122
242	Hyperediting of Multiple Cytidines of Apolipoprotein B mRNA by APOBEC-1 Requires Auxiliary Protein(s) but Not a Mooring Sequence Motif. Journal of Biological Chemistry, 1996, 271, 11506-11510.	3.4	54
243	Effect of the plateletâ€activating factor antagonist, TCVâ€309, and the cycloâ€oxygenase inhibitor, ibuprofen, on the haemodynamic changes in canine experimental endotoxic shock. British Journal of Pharmacology, 1993, 110, 1501-1507.	5.4	17
244	Effect of N-Nitro-L-Arginine on Effective Vascular Stiffness in Dogs. The Japanese Journal of Pharmacology, 1993, 63, 41-45.	1.2	5
245	Induced pluripotent stem cells. , 0, , 19-33.		0