Warren M Grill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/115124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stoney vs. Histed: Quantifying the spatial effects of intracortical microstimulation. Brain Stimulation, 2022, 15, 141-151.	0.7	20
2	Characterization of bilateral, pudendal nerve-evoked, urethral rhabdosphincter contractions in anesthetized cats. , 2022, 1, 100006.		1
3	Characterizing the short-latency evoked response to intracortical microstimulation across a multi-electrode array. Journal of Neural Engineering, 2022, 19, 026044.	1.8	17
4	Initial Clinical Outcome With Bilateral, Dual-Target Deep Brain Stimulation Trial in Parkinson Disease Using Summit RC + S. Neurosurgery, 2022, 91, 132-138.	0.6	8
5	The Cortical Evoked Potential Corresponds with Deep Brain Stimulation Efficacy in Rats. Journal of Neurophysiology, 2022, , .	0.9	4
6	Isolating two sources of variability of subcortical stimulation to quantify fluctuations of corticospinal tract excitability. Clinical Neurophysiology, 2022, 138, 134-142.	0.7	14
7	Offline Policy Evaluation for Learning-based Deep Brain Stimulation Controllers. , 2022, , .		Ο
8	Methodologies for the Restoration of Bladder and Bowel Functions. , 2022, , 2014-2019.		0
9	Computational Models to Optimize the Electrodes and Waveforms for Deep Brain Stimulation. , 2022, , 938-941.		Ο
10	Excitation properties of computational models of unmyelinated peripheral axons. Journal of Neurophysiology, 2021, 125, 86-104.	0.9	11
11	Technology of deep brain stimulation: current status and future directions. Nature Reviews Neurology, 2021, 17, 75-87.	4.9	341
12	Functions of Interoception: From Energy Regulation to Experience of the Self. Trends in Neurosciences, 2021, 44, 29-38.	4.2	124
13	Effects of intravesical prostaglandin E ₂ on bladder function are preserved in capsaicin-desensitized rats. American Journal of Physiology - Renal Physiology, 2021, 320, F212-F223.	1.3	1
14	Non-monotonic kilohertz frequency neural block thresholds arise from amplitude- and frequency-dependent charge imbalance. Scientific Reports, 2021, 11, 5077.	1.6	8
15	Control of colonic motility using electrical stimulation to modulate enteric neural activity. American Journal of Physiology - Renal Physiology, 2021, 320, G675-G687.	1.6	6
16	<scp>Levodopaâ€Induced</scp> Dyskinesia Is Mediated by Cortical Gamma Oscillations in Experimental Parkinsonism. Movement Disorders, 2021, 36, 1044-1045.	2.2	0
17	Dysfunctional voiding behavior and impaired muscle contractility in a rat model of detrusor underactivity. Neurourology and Urodynamics, 2021, 40, 1889-1899.	0.8	4
18	Voiding behavior in awake unrestrained untethered spontaneously hypertensive and Wistar control rats. American Journal of Physiology - Renal Physiology, 2021, 321, F195-F206.	1.3	2

#	Article	IF	CITATIONS
19	Adaptive Parameter Modulation of Deep Brain Stimulation Based on Improved Supervisory Algorithm. Frontiers in Neuroscience, 2021, 15, 750806.	1.4	8
20	ASCENT (Automated Simulations to Characterize Electrical Nerve Thresholds): A pipeline for sample-specific computational modeling of electrical stimulation of peripheral nerves. PLoS Computational Biology, 2021, 17, e1009285.	1.5	28
21	Biophysics and Mechanisms of Spinal Cord Stimulation for Chronic Pain. , 2021, , 1-45.		4
22	State-dependent bioelectronic interface to control bladder function. Scientific Reports, 2021, 11, 314.	1.6	11
23	Comparing temporal interference stimulation and other kilohertz stimulation modalities using computational models. Brain Stimulation, 2021, 14, 1679.	0.7	2
24	In vivo Visualization of Pig Vagus Nerve "Vagotopy―Using Ultrasound. Frontiers in Neuroscience, 2021, 15, 676680.	1.4	9
25	Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimulation, 2020, 13, 175-189.	0.7	193
26	Continuous deep brain stimulation of the subthalamic nucleus may not modulate beta bursts in patients with Parkinson's disease. Brain Stimulation, 2020, 13, 433-443.	0.7	30
27	Effects of ramped-frequency thalamic deep brain stimulation on tremor and activity of modeled neurons. Clinical Neurophysiology, 2020, 131, 625-634.	0.7	3
28	Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Frontiers in Neuroscience, 2020, 14, 601479.	1.4	55
29	Evoked potentials reveal neural circuits engaged by human deep brain stimulation. Brain Stimulation, 2020, 13, 1706-1718.	0.7	39
30	A roadmap for advancing neurostimulation approaches for bladder and bowel function after spinal cord injury. Spinal Cord, 2020, 58, 1227-1232.	0.9	5
31	Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors. Journal of Neuroscience, 2020, 40, 4323-4334.	1.7	59
32	Model-Based Design of Closed Loop Deep Brain Stimulation Controller using Reinforcement Learning. , 2020, , .		13
33	Kilohertz waveforms optimized to produce closed-state Na+Âchannel inactivation eliminate onset response in nerve conduction block. PLoS Computational Biology, 2020, 16, e1007766.	1.5	12
34	Sources of off-target effects of vagus nerve stimulation using the helical clinical lead in domestic pigs. Journal of Neural Engineering, 2020, 17, 046017.	1.8	55
35	Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation. Journal of Neural Engineering, 2020, 17, 026022.	1.8	72
36	<i>In vivo</i> quantification of excitation and kilohertz frequency block of the rat vagus nerve. Journal of Neural Engineering, 2020, 17, 026005.	1.8	34

#	Article	IF	CITATIONS
37	Comments and Replies Energy Optimal Stimulation Waveforms, or Not: Comments on "An Investigation of Neural Stimulation Efficiency With Gaussian Waveforms― IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1239-1240.	2.7	1
38	Stimulation of the pelvic nerve increases bladder capacity in the PGE ₂ cat model of overactive bladder. American Journal of Physiology - Renal Physiology, 2020, 318, F1357-F1368.	1.3	4
39	Spinal cord stimulation for the restoration of bladder function after spinal cord injury. Healthcare Technology Letters, 2020, 7, 87-92.	1.9	13
40	A comprehensive model-based framework for optimal design of biomimetic patterns of electrical stimulation for prosthetic sensation. Journal of Neural Engineering, 2020, 17, 046045.	1.8	23
41	Quantitative comparisons of block thresholds and onset responses for charge-balanced kilohertz frequency waveforms. Journal of Neural Engineering, 2020, 17, 046048.	1.8	12
42	SPARC: Effect of Waveform on Kilohertz Frequency Nerve Block. FASEB Journal, 2020, 34, 1-1.	0.2	0
43	SPARC: A Road Map for Vagus Nerve Stimulation: Evidence of Vagotopy in a Swine Model. FASEB Journal, 2020, 34, 1-1.	0.2	2
44	SPARC: Neural elements mediating side effects during cervical vagus nerve stimulation in the pig. FASEB Journal, 2020, 34, 1-1.	0.2	1
45	SPARC: Parameters of Electrical Excitation and Block of the Rat Vagus Nerve. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
46	SPARC: Biophysical Modeling of Vagus Nerve Stimulation for Translational Scaling of Stimulation Parameters Across Species. FASEB Journal, 2020, 34, 1-1.	0.2	0
47	SPARC: A Hybrid Computational Approach to Classify Vagal C Fiber Functions. FASEB Journal, 2020, 34, 1-1.	0.2	1
48	Title is missing!. , 2020, 16, e1007766.		0
49	Title is missing!. , 2020, 16, e1007766.		0
50	Title is missing!. , 2020, 16, e1007766.		0
51	Title is missing!. , 2020, 16, e1007766.		0
52	Model-Based Evaluation of Closed-Loop Deep Brain Stimulation Controller to Adapt to Dynamic Changes in Reference Signal. Frontiers in Neuroscience, 2019, 13, 956.	1.4	39
53	Randomized Controlled Trial to Assess the Impact of High Concentration Intraurethral Lidocaine on Urodynamic Voiding Parameters. Urology, 2019, 133, 72-77.	0.5	6
54	Accuracy of robotic coil positioning during transcranial magnetic stimulation. Journal of Neural Engineering, 2019, 16, 054003.	1.8	26

#	Article	IF	CITATIONS
55	Average firing rate rather than temporal pattern determines metabolic cost of activity in thalamocortical relay neurons. Scientific Reports, 2019, 9, 6940.	1.6	13
56	Multimodal characterization of the human nucleus accumbens. NeuroImage, 2019, 198, 137-149.	2.1	33
57	Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays. Biomaterials, 2019, 205, 120-132.	5.7	47
58	Innovative device illuminates the horizon of bioelectronic medicines. Nature Reviews Urology, 2019, 16, 209-210.	1.9	1
59	Randomized Controlled Trial to Assess the Impact of Intraurethral Lidocaine on Urodynamic Voiding Parameters. Obstetrical and Gynecological Survey, 2019, 74, 648-649.	0.2	0
60	Empirically Based Guidelines for Selecting Vagus Nerve Stimulation Parameters in Epilepsy and Heart Failure. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034264.	2.9	26
61	Sensory pudendal nerve stimulation increases bladder capacity through sympathetic mechanisms in cyclophosphamideâ€induced cystitis rats. Neurourology and Urodynamics, 2019, 38, 135-143.	0.8	10
62	On the parameters used in finite element modeling of compound peripheral nerves. Journal of Neural Engineering, 2019, 16, 016007.	1.8	41
63	Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimulation, 2019, 12, 19-29.	0.7	113
64	Randomized Controlled Trial to Assess the Impact of Intraurethral Lidocaine on Urodynamic Voiding Parameters. Female Pelvic Medicine and Reconstructive Surgery, 2019, 25, 265-270.	0.6	6
65	Beta Frequency Oscillations in the Subthalamic Nucleus Are Not Sufficient for the Development of Symptoms of Parkinsonian Bradykinesia/Akinesia in Rats. ENeuro, 2019, 6, ENEURO.0089-19.2019.	0.9	22
66	Network Models of the Basal Ganglia in Parkinson's Disease: Advances in Deep Brain Stimulation Through Model-Based Optimization. Springer Series in Cognitive and Neural Systems, 2019, , 41-55.	0.1	0
67	Effects of vagal neuromodulation on feeding behavior. Brain Research, 2018, 1693, 180-187.	1.1	42
68	Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields. Journal of Neural Engineering, 2018, 15, 026003.	1.8	28
69	Sensory percepts induced by microwire array and DBS microstimulation in human sensory thalamus. Brain Stimulation, 2018, 11, 416-422.	0.7	25
70	Stimulation of the sensory pudendal nerve increases bladder capacity in the rat. American Journal of Physiology - Renal Physiology, 2018, 314, F543-F550.	1.3	24
71	Learning-Based Control Design for Deep Brain Stimulation. , 2018, , .		1
72	Temporal pattern of electrical stimulation is a new dimension of therapeutic innovation. Current Opinion in Biomedical Engineering, 2018, 8, 1-6.	1.8	45

#	Article	IF	CITATIONS
73	Platform for Model-Based Design and Testing for Deep Brain Stimulation. , 2018, , .		10
74	Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation. Journal of Neurophysiology, 2018, 120, 662-680.	0.9	44
75	Translating promising strategies for bowel and bladder management in spinal cord injury. Experimental Neurology, 2018, 306, 169-176.	2.0	44
76	Coupling Magnetically Induced Electric Fields to Neurons: Longitudinal and Transverse Activation. Biophysical Journal, 2018, 115, 95-107.	0.2	47
77	Waveforms for Neural Stimulation. , 2018, , 95-102.		5
78	Modeling Current Sources for Neural Stimulation in COMSOL. Frontiers in Computational Neuroscience, 2018, 12, 40.	1.2	44
79	Detection of Bladder Contractions From the Activity of the External Urethral Sphincter in Rats Using Sparse Regression. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1636-1644.	2.7	5
80	Biophysically realistic neuron models for simulation of cortical stimulation. Journal of Neural Engineering, 2018, 15, 066023.	1.8	106
81	Patterned low-frequency deep brain stimulation induces motor deficits and modulates cortex-basal ganglia neural activity in healthy rats. Journal of Neurophysiology, 2018, 120, 2410-2422.	0.9	8
82	Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs. Journal of Neural Engineering, 2018, 15, 056001.	1.8	16
83	Loss of Ranbp2 in motor neurons causes the disruption of nucleocytoplasmic and chemokine signaling and proteostasis of hnRNPH3 and Mmp28, and the development of amyotrophic lateral sclerosis (ALS)-like syndromes. DMM Disease Models and Mechanisms, 2017, 10, 559-579.	1.2	34
84	Stimulation of the pelvic nerve increases bladder capacity in the prostaglandin E ₂ rat model of overactive bladder. American Journal of Physiology - Renal Physiology, 2017, 313, F657-F665.	1.3	14
85	Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. Journal of Neurophysiology, 2017, 117, 136-147.	0.9	77
86	Optimized temporal pattern of brain stimulation designed by computational evolution. Science Translational Medicine, 2017, 9, .	5.8	113
87	Frequency-dependent, transient effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling and neuronal activity in the hemiparkinsonian rat. Behavioural Brain Research, 2017, 320, 119-127.	1.2	17
88	Electrical stimulation of gut motility guided by an <i>in silico</i> model. Journal of Neural Engineering, 2017, 14, 066010.	1.8	18
89	An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. Journal of Neural Engineering, 2017, 14, 066013.	1.8	39
90	Multiple Reflex Pathways Contribute to Bladder Activation by Intraurethral Stimulation in Persons With Spinal Cord Injury. Urology, 2017, 109, 210-215.	0.5	5

#	Article	IF	CITATIONS
91	OAB without an overactive bladder in the acute prostaglandin E2 rat model. American Journal of Physiology - Renal Physiology, 2017, 313, F1169-F1177.	1.3	16
92	The effects of neuromodulation in a novel obese-prone rat model of detrusor underactivity. American Journal of Physiology - Renal Physiology, 2017, 313, F815-F825.	1.3	9
93	Sensory feedback from the urethra evokes stateâ€dependent lower urinary tract reflexes in rat. Journal of Physiology, 2017, 595, 5687-5698.	1.3	11
94	Neuroprosthetic Control of Lower Urinary Tract Function. Series on Bioengineering and Biomedical Engineering, 2017, , 537-565.	0.1	0
95	Stimulation Efficiency with Decaying Exponential Waveforms in a Wirelessly-Powered Switched-Capacitor Discharge Stimulation System. IEEE Transactions on Biomedical Engineering, 2017, 65, 1-1.	2.5	14
96	Real-time decoding of bladder pressure from pelvic nerve activity. , 2017, , .		4
97	Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Frontiers in Neuroscience, 2017, 11, 564.	1.4	63
98	Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Frontiers in Neuroscience, 2017, 11, 734.	1.4	65
99	Estimating postvoid residual volume without measuring residual bladder volume during serial cystometrograms. American Journal of Physiology - Renal Physiology, 2016, 311, F459-F468.	1.3	5
100	Kilohertz Frequency Deep Brain Stimulation Is Ineffective at Regularizing the Firing of Model Thalamic Neurons. Frontiers in Computational Neuroscience, 2016, 10, 22.	1.2	18
101	Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation. Journal of Neurophysiology, 2016, 115, 2791-2802.	0.9	39
102	Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant. Journal of Neuroscience, 2016, 36, 5071-5083.	1.7	9
103	Nerve excitation using an amplitude-modulated signal with kilohertz-frequency carrier and non-zero offset. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 63.	2.4	11
104	Phasic activation of the external urethral sphincter increases voiding efficiency in the rat and the cat. Experimental Neurology, 2016, 285, 173-181.	2.0	29
105	Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation. Journal of Computational Neuroscience, 2016, 40, 283-296.	0.6	12
106	A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. Journal of Computational Neuroscience, 2016, 40, 207-229.	0.6	84
107	Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiological Reports, 2016, 4, e12689.	0.7	51
108	Enhancement of Neuromodulation with Novel Pulse Shapes Generated by Controllable Pulse Parameter Transcranial Magnetic Stimulation. Brain Stimulation, 2016, 9, 39-47.	0.7	61

#	Article	IF	CITATIONS
109	Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting. Clinical Neurophysiology, 2016, 127, 1551-1559.	0.7	26
110	Temporal pattern of stimulation modulates reflex bladder activation by pudendal nerve stimulation. Neurourology and Urodynamics, 2016, 35, 882-887.	0.8	13
111	Sensory and circuit mechanisms mediating lower urinary tract reflexes. Autonomic Neuroscience: Basic and Clinical, 2016, 200, 21-28.	1.4	19
112	Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control. Journal of Neurophysiology, 2015, 114, 284-300.	0.9	36
113	Dynamics of the sensory response to urethral flow over multiple time scales in rat. Journal of Physiology, 2015, 593, 3351-3371.	1.3	23
114	Model-based analysis and design of waveforms for efficient neural stimulation. Progress in Brain Research, 2015, 222, 147-162.	0.9	43
115	Electrical stimulation for the treatment of lower urinary tract dysfunction after spinal cord injury. Journal of Spinal Cord Medicine, 2015, 38, 135-146.	0.7	61
116	Measurement of Evoked Potentials During Thalamic Deep Brain Stimulation. Brain Stimulation, 2015, 8, 42-56.	0.7	45
117	Corrections to "A Power-Efficient Switched-Capacitor Stimulating System for Electrical/Optical Deep-Brain Stimulation―[Jan 15 360-374]. IEEE Journal of Solid-State Circuits, 2015, 50, 1736-1736.	3.5	0
118	Effects of frequency-dependent membrane capacitance on neural excitability. Journal of Neural Engineering, 2015, 12, 056015.	1.8	27
119	Phantom model of transcutaneous electrical stimulation with kilohertz signals. , 2015, , .		2
120	Modeling the response of small myelinated and unmyelinated axons to kilohertz frequency signals. , 2015, , .		3
121	Design and <i>in vivo</i> evaluation of more efficient and selective deep brain stimulation electrodes. Journal of Neural Engineering, 2015, 12, 046030.	1.8	35
122	A neuron model of stochastic resonance using rectangular pulse trains. Journal of Computational Neuroscience, 2015, 38, 53-66.	0.6	12
123	Mammalian Motor Nerve Fibers, Models of. , 2015, , 1645-1648.		0
124	Computational Models to Optimize the Electrodes and Waveforms for Deep Brain Stimulation. , 2015, , 769-773.		0
125	Methodologies for the Restoration of Bladder and Bowel Functions. , 2015, , 1697-1702.		0
126	Evaluation of high-perimeter electrode designs for deep brain stimulation. Journal of Neural Engineering, 2014, 11, 046026.	1.8	33

#	Article	IF	CITATIONS
127	A spinal GABAergic mechanism is necessary for bladder inhibition by pudendal afferent stimulation. American Journal of Physiology - Renal Physiology, 2014, 307, F921-F930.	1.3	26
128	Volume conductor model of transcutaneous electrical stimulation with kilohertz signals. Journal of Neural Engineering, 2014, 11, 066012.	1.8	23
129	Selective coâ€stimulation of pudendal afferents enhances bladder activation and improves voiding efficiency. Neurourology and Urodynamics, 2014, 33, 1272-1278.	0.8	31
130	Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. Journal of Neurophysiology, 2014, 111, 1949-1959.	0.9	64
131	Investigation of Deep Brain Stimulation Mechanisms During Implantable Pulse Generator Replacement Surgery. Neuromodulation, 2014, 17, 419-424.	0.4	15
132	Response of Human Thalamic Neurons to High-Frequency Stimulation. PLoS ONE, 2014, 9, e96026.	1.1	18
133	Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Research, 2014, 1569, 19-31.	1.1	126
134	Bioelectronic medicines: a research roadmap. Nature Reviews Drug Discovery, 2014, 13, 399-400.	21.5	283
135	Influences of Interpolation Error, Electrode Geometry, and the Electrode–Tissue Interface on Models of Electric Fields Produced by Deep Brain Stimulation. IEEE Transactions on Biomedical Engineering, 2014, 61, 297-307.	2.5	33
136	Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. Journal of Neurophysiology, 2014, 112, 552-567.	0.9	61
137	Analysis of deep brain stimulation electrode characteristics for neural recording. Journal of Neural Engineering, 2014, 11, 046010.	1.8	30
138	Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nature Neuroscience, 2014, 17, 1130-1136.	7.1	123
139	Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation. PLoS ONE, 2014, 9, e114938.	1.1	56
140	Computational Models to Optimize the Electrodes and Waveforms for Deep Brain Stimulation. , 2014, , 1-5.		0
141	Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve. Journal of Neural Engineering, 2013, 10, 036010.	1.8	41
142	Experimental and model-based analysis of differences in perception of cutaneous electrical stimulation across the sole of the foot. Medical and Biological Engineering and Computing, 2013, 51, 999-1009.	1.6	13
143	Activation of peripheral nerve fibers by electrical stimulation in the sole of the foot. BMC Neuroscience, 2013, 14, 116.	0.8	25
144	Principles of electrical stimulation of neural tissue. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 3-18.	1.0	103

#	Article	IF	CITATIONS
145	Plenary speakers: Reliable interfaces with the peripheral nervous system. , 2013, , .		Ο
146	Temporal patterns of pudendal afferent stimulation modulate reflex bladder activation. , 2013, , .		1
147	Model-based optimization of electrode designs for deep brain stimulation. , 2013, , .		4
148	High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. Journal of Neural Engineering, 2013, 10, 026003.	1.8	110
149	Improved efficacy of temporally non-regular deep brain stimulation in Parkinson's disease. Experimental Neurology, 2013, 239, 60-67.	2.0	115
150	Circuit and volume conductor models of transcutaneous electrical stimulation. , 2013, , .		0
151	Stimulation location within the substantia nigra pars reticulata differentially modulates gait in hemiparkinsonian rats. , 2013, , .		1
152	Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses. Journal of Neural Engineering, 2013, 10, 036002.	1.8	29
153	Network model of the effects of spinal cord stimulation. , 2013, , .		0
154	Neural origin of evoked potentials during thalamic deep brain stimulation. Journal of Neurophysiology, 2013, 110, 826-843.	0.9	23
155	Methodologies for the Restoration of Bladder and Bowel Functions. , 2013, , 1-6.		0
156	Effective Deep Brain Stimulation Suppresses Low-Frequency Network Oscillations in the Basal Ganglia by Regularizing Neural Firing Patterns. Journal of Neuroscience, 2012, 32, 15657-15668.	1.7	169
157	Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. Journal of Neurophysiology, 2012, 107, 364-383.	0.9	93
158	Peripheral Nerve Stimulation in Regional Anesthesia. Regional Anesthesia and Pain Medicine, 2012, 37, 383-392.	1.1	36
159	Urethral flow-responsive afferents in the cat sacral dorsal root ganglia. Neuroscience Letters, 2012, 516, 34-38.	1.0	25
160	Computer-based model of epidural motor cortex stimulation: Effects of electrode position and geometry on activation of cortical neurons. Clinical Neurophysiology, 2012, 123, 160-172.	0.7	63
161	Tremor reduction and modeled neural activity during cycling thalamic deep brain stimulation. Clinical Neurophysiology, 2012, 123, 1044-1052.	0.7	34
162	Characterizing Effects of Subthalamic Nucleus Deep Brain Stimulation on Methamphetamine-Induced Circling Behavior in Hemi-Parkinsonian Rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 626-635.	2.7	26

#	Article	IF	CITATIONS
163	Electrochemical Charge Storage Properties of Vertically Aligned Carbon Nanotube Films: Effects of Thermal Oxidation. Journal of Physical Chemistry C, 2012, 116, 19526-19534.	1.5	4
164	Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 2012, 32, 499-519.	0.6	116
165	Bilateral pudendal afferent stimulation improves bladder emptying in rats with urinary retention. BJU International, 2012, 109, 1051-1058.	1.3	21
166	Effects of stimulation site and stimulation parameters on bladder inhibition by electrical nerve stimulation. BJU International, 2012, 110, 136-143.	1.3	47
167	Multiple Pudendal Sensory Pathways Reflexly Modulate Bladder and Urethral Activity in Patients With Spinal Cord Injury. Journal of Urology, 2011, 185, 737-743.	0.2	39
168	Irregular high frequency patterns decrease the effectiveness of deep brain stimulation in a rat model of Parkinson's disease. , 2011, , .		2
169	Excitation properties of the right cervical vagus nerve in adult dogs. Experimental Neurology, 2011, 227, 62-68.	2.0	85
170	Closed-Loop Control of Deep Brain Stimulation: A Simulation Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 15-24.	2.7	175
171	Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex. Journal of Neural Engineering, 2011, 8, 066016.	1.8	9
172	Instrumentation to record evoked potentials for closed-loop control of deep brain stimulation. , 2011, 2011, 6777-80.		16
173	Electrical stimulation of the urethra evokes bladder contractions and emptying in spinal cord injury men: Case studies. Journal of Spinal Cord Medicine, 2011, 34, 315-321.	0.7	21
174	Mechanisms of reflex bladder activation by pudendal afferents. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R398-R407.	0.9	36
175	Electrochemical Charge Storage Properties of Vertically Aligned Carbon Nanotube Films: The Activation-Enhanced Length Effect. Journal of the Electrochemical Society, 2011, 158, K217.	1.3	3
176	Selective co-stimulation of pudendal afferents enhances reflex bladder activation. , 2011, 2011, 1057-60.		2
177	Conditional and continuous electrical stimulation increase cystometric capacity in persons with spinal cord injury. Neurourology and Urodynamics, 2010, 29, 401-407.	0.8	49
178	Deep Brain Stimulation Alleviates Parkinsonian Bradykinesia by Regularizing Pallidal Activity. Journal of Neurophysiology, 2010, 104, 911-921.	0.9	150
179	Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 319-328.	2.7	95
180	Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers. BMC Urology, 2010, 10, 11.	0.6	16

#	Article	IF	CITATIONS
181	Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode. Journal of Neural Engineering, 2010, 7, 066009.	1.8	35
182	Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. Journal of Neural Engineering, 2010, 7, 046009.	1.8	138
183	Electrical Stimulation of the Urethra Evokes Bladder Contractions in a Woman With Spinal Cord Injury. Journal of Spinal Cord Medicine, 2010, 33, 261-265.	0.7	16
184	Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats. Experimental Neurology, 2010, 222, 211-218.	2.0	58
185	Principles of Electric Field Generation for Stimulation of the Central Nervous System. , 2009, , 145-155.		4
186	Analysis of high-perimeter planar electrodes for efficient neural stimulation. Frontiers in Neuroengineering, 2009, 2, 15.	4.8	45
187	Intraurethral activation of excitatory bladder reflexes in persons with spinal cord injury. , 2009, 2009, 6781-4.		7
188	High efficiency electrodes for deep brain stimulation. , 2009, 2009, 3298-301.		20
189	Electrical stimulation for control of bladder function. , 2009, 2009, 2369-70.		8
190	Genetic Algorithm Reveals Energy-Efficient Waveforms for Neural Stimulation. , 2009, 2009, 634-7.		9
191	Measurement of the current–distance relationship using a novel refractory interaction technique. Journal of Neural Engineering, 2009, 6, 036005.	1.8	6
192	Impedance characteristics of deep brain stimulation electrodes <i>in vitro</i> and <i>in vivo</i> . Journal of Neural Engineering, 2009, 6, 046008.	1.8	129
193	Hindlimb Endpoint Forces Predict Movement Direction Evoked by Intraspinal Microstimulation in Cats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 379-389.	2.7	20
194	Implanted Neural Interfaces: Biochallenges and Engineered Solutions. Annual Review of Biomedical Engineering, 2009, 11, 1-24.	5.7	484
195	Myoclonus and tremor response to thalamic deep brain stimulation parameters in a patient with inherited myoclonus–dystonia syndrome. Clinical Neurology and Neurosurgery, 2009, 111, 303-306.	0.6	65
196	Intraurethral Stimulation Evokes Bladder Responses via 2 Distinct Reflex Pathways. Journal of Urology, 2009, 182, 366-373.	0.2	33
197	Computer-based Finite Element Modeling of Insulated Tuohy Needles Used in Regional Anesthesia. Anesthesiology, 2009, 110, 1229-1234.	1.3	4
198	Mechanisms of Deep Brain Stimulation in Movement Disorders as Revealed by Changes in Stimulus Frequency. Neurotherapeutics, 2008, 5, 14-25.	2.1	119

#	Article	IF	CITATIONS
199	Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation. Journal of Computational Neuroscience, 2008, 24, 81-93.	0.6	62
200	Mechanisms underlying reversal of motor unit activation order in electrically evoked contractions after spinal cord injury. Muscle and Nerve, 2008, 37, 210-218.	1.0	9
201	Dorsal genital nerve stimulation for the treatment of overactive bladder symptoms. Neurourology and Urodynamics, 2008, 27, 499-503.	0.8	81
202	Computational evaluation of methods for measuring the spatial extent of neural activation. Journal of Neuroscience Methods, 2008, 173, 153-164.	1.3	8
203	Somatic innervation of the feline lower urinary tract. Brain Research, 2008, 1246, 80-87.	1.1	23
204	A method to estimate the spatial extent of activation in thalamic deep brain stimulation. Clinical Neurophysiology, 2008, 119, 2148-2158.	0.7	75
205	Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents. Journal of Neural Engineering, 2008, 5, 144-154.	1.8	44
206	Bladder activation by selective stimulation of pudendal nerve afferents in the cat. Experimental Neurology, 2008, 212, 218-225.	2.0	80
207	Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. Journal of Neural Engineering, 2008, 5, 44-53.	1.8	207
208	Computational modeling of epidural cortical stimulation. Journal of Neural Engineering, 2008, 5, 443-454.	1.8	61
209	Activation and inhibition of the micturition reflex by penile afferents in the cat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1880-R1889.	0.9	59
210	Role of pudendal afferents in voiding efficiency in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R660-R672.	0.9	70
211	Deep Brain Stimulation Reduces Neuronal Entropy in the MPTP-Primate Model of Parkinson's Disease. Journal of Neurophysiology, 2008, 100, 2807-2818.	0.9	145
212	A Model Predicting Optimal Parameters for Deep Brain Stimulation in Essential Tremor. Journal of Clinical Neurophysiology, 2008, 25, 265-273.	0.9	22
213	Tremor varies as a function of the temporal regularity of deep brain stimulation. NeuroReport, 2008, 19, 599-602.	0.6	60
214	Basal Ganglia Modeling in Healthy and Parkinson's Disease State. I. Isolated Neurons Activity. Proceedings of the American Control Conference, 2007, , .	0.0	13
215	Pulse-to-Pulse Changes in the Frequency of Deep Brain Stimulation Affect Tremor and Modeled Neuronal Activity. Journal of Neurophysiology, 2007, 98, 1675-1684.	0.9	47
216	Basal Ganglia Modeling in Healthy and Parkinson's Disease State. II. Network-based Multi-Units Simulation. Proceedings of the American Control Conference, 2007, , .	0.0	5

#	Article	IF	CITATIONS
217	Fabrication and evaluation of conductive elastomer electrodes for neural stimulation. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1057-1073.	1.9	31
218	Minimally-invasive electrical stimulation of the pudendal nerve: A pre-clinical study for neural control of the lower urinary tract. Neurourology and Urodynamics, 2007, 26, 562-569.	0.8	29
219	Pudendal nerve stimulation evokes reflex bladder contractions in persons with chronic spinal cord injury. Neurourology and Urodynamics, 2007, 26, 1020-1023.	0.8	59
220	Lead Design and Initial Applications of a New Lead for Long-Term Endovascular Vagal Stimulation. PACE - Pacing and Clinical Electrophysiology, 2007, 30, S215-S218.	0.5	6
221	Guest Editorial Special Theme on Deep Brain Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 153-154.	2.7	0
222	Amplitude- and Frequency-Dependent Changes in Neuronal Regularity Parallel Changes in Tremor With Thalamic Deep Brain Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 190-197.	2.7	69
223	Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb. Journal of Biomechanics, 2007, 40, 3679-3687.	0.9	4
224	Signal Considerations for Chronically Implanted Electrodes for Brain Interfacing. Frontiers in Neuroengineering Series, 2007, , 41-61.	0.4	7
225	Theory and Physiology of Electrical Stimulation of the Central Nervous System. , 2007, , .		0
226	Closed Loop Electrical Control of Urinary Continence. Journal of Urology, 2006, 175, 1559-1563.	0.2	54
227	P2-48. Heart Rhythm, 2006, 3, S154.	0.3	0
228	Bladder emptying by intermittent electrical stimulation of the pudendal nerve. Journal of Neural Engineering, 2006, 3, 43-51.	1.8	45
229	Frequency-dependent selection of reflexes by pudendal afferents in the cat. Journal of Physiology, 2006, 577, 115-126.	1.3	88
230	Sites of neuronal excitation by epiretinal electrical stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 5-13.	2.7	65
231	Detection of neurogenic detrusor contractions from the activity of the external anal sphincter in cat and human. Neurourology and Urodynamics, 2006, 25, 140-147.	0.8	33
232	Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor. Movement Disorders, 2006, 21, 1920-1928.	2.2	105
233	Spinal Micturition Reflex Mediated by Afferents in the Deep Perineal Nerve. Journal of Neurophysiology, 2005, 93, 2688-2697.	0.9	61
234	Structural mechanisms to produce differential dendritic gains. Brain Research, 2005, 1033, 117-127.	1.1	5

#	Article	IF	CITATIONS
235	Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13, 428-435.	2.7	50
236	Functional magnetic resonance imaging of the human lumbar spinal cord. Journal of Magnetic Resonance Imaging, 2005, 21, 527-535.	1.9	27
237	Fascicular anatomy and surgical access of the human pudendal nerve. World Journal of Urology, 2005, 23, 411-418.	1.2	42
238	Applied electric fields accelerate the diffusion rate and increase the diffusion distance of Dil in fixed tissue. Journal of Neuroscience Methods, 2005, 141, 155-163.	1.3	18
239	Polarization of a Spherical Cell in a Nonuniform Extracellular Electric Field. Annals of Biomedical Engineering, 2005, 33, 603-615.	1.3	30
240	Safety considerations for deep brain stimulation: review and analysis. Expert Review of Medical Devices, 2005, 2, 409-420.	1.4	70
241	Electrical Stimulation of the Neuromuscular System. , 2005, , 157-191.		10
242	Temporal excitation properties of paresthesias evoked by thalamic microstimulation. Clinical Neurophysiology, 2005, 116, 1227-1234.	0.7	24
243	Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Journal of Neural Engineering, 2005, 2, 139-147.	1.8	141
244	Modularity of Motor Output Evoked By Intraspinal Microstimulation in Cats. Journal of Neurophysiology, 2004, 91, 502-514.	0.9	108
245	Cellular Effects of Deep Brain Stimulation: Model-Based Analysis of Activation and Inhibition. Journal of Neurophysiology, 2004, 91, 1457-1469.	0.9	716
246	Prediction of Myelinated Nerve Fiber Stimulation Thresholds: Limitations of Linear Models. IEEE Transactions on Biomedical Engineering, 2004, 51, 229-236.	2.5	53
247	Electrical Localization of Neural Activity in the Dorsal Horn of the Spinal Cord: A Modeling Study. Annals of Biomedical Engineering, 2004, 32, 1694-1709.	1.3	3
248	Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation. Journal of Neuroscience Methods, 2004, 132, 91-99.	1.3	26
249	A urethral afferent mediated excitatory bladder reflex exists in humans. Neuroscience Letters, 2004, 360, 9-12.	1.0	74
250	Selection of stimulus parameters for deep brain stimulation. Clinical Neurophysiology, 2004, 115, 2431-2441.	0.7	400
251	Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 2004, 15, 1137-1140.	0.6	318
252	ELECTRICAL STIMULATION OF THE PERIPHERAL NERVOUS SYSTEM: BIOPHYSICS AND EXCITATION PROPERTIES. Series on Bioengineering and Biomedical Engineering, 2004, , 319-341.	0.1	8

#	Article	IF	CITATIONS
253	A Catheter Based Method to Activate Urethral Sensory Nerve Fibers. Journal of Urology, 2003, 170, 126-129.	0.2	30
254	Electrical stimulation for the treatment of bladder dysfunction: Current status and future possibilities. Neurological Research, 2002, 24, 413-430.	0.6	94
255	Modeling the Excitability of Mammalian Nerve Fibers: Influence of Afterpotentials on the Recovery Cycle. Journal of Neurophysiology, 2002, 87, 995-1006.	0.9	614
256	Evaluation of command algorithms for control of upper-extremity neural prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2002, 10, 94-101.	2.7	12
257	Extracellular Stimulation of Central Neurons: Influence of Stimulus Waveform and Frequency on Neuronal Output. Journal of Neurophysiology, 2002, 88, 1592-1604.	0.9	338
258	Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers. IEEE Transactions on Biomedical Engineering, 2002, 49, 527-532.	2.5	15
259	Finite Element Analysis of the Current-Density and Electric Field Generated by Metal Microelectrodes. Annals of Biomedical Engineering, 2001, 29, 227-235.	1.3	142
260	Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus & Related Systems, 2001, 1, 269-277.	0.5	33
261	Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus & Related Systems, 2001, 1, 269.	0.5	73
262	Optimal filtering of whole nerve signals. Journal of Neuroscience Methods, 2001, 106, 101-110.	1.3	16
263	Detection and inhibition of hyperreflexia-like bladder contractions in the cat by sacral nerve root recording and electrical stimulation. Neurourology and Urodynamics, 2001, 20, 215-230.	0.8	68
264	Detection and inhibition of hyperreflexiaâ€like bladder contractions in the cat by sacral nerve root recording and electrical stimulation. Neurourology and Urodynamics, 2001, 20, 215-230.	0.8	2
265	Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. , 2000, 50, 215-226.		100
266	Electrical Activation of Spinal Neural Circuits: Application to Motor-System Neural Prostheses. Neuromodulation, 2000, 3, 97-106.	0.4	13
267	Selective Microstimulation of Central Nervous System Neurons. Annals of Biomedical Engineering, 2000, 28, 219-233.	1.3	211
268	Neuroprosthetic Applications of Electrical Stimulation. Assistive Technology, 2000, 12, 6-20.	1.2	76
269	Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. Journal of Biomedical Materials Research Part B, 2000, 50, 215.	3.0	19
270	Intraspinal Microstimulation. Frontiers in Neuroscience, 2000, , .	0.0	9

#	Article	IF	CITATIONS
271	Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats. Brain Research, 1999, 836, 19-30.	1.1	74
272	FUNCTIONAL ANATOMY OF THE MALE FELINE URETHRA: MORPHOLOGICAL AND PHYSIOLOGICAL CORRELATIONS. Journal of Urology, 1999, 161, 654-659.	0.2	37
273	Extended survival time following pseudorabies virus injection labels the suprapontine neural network controlling the bladder and urethra in the rat. Neuroscience Letters, 1999, 270, 63-66.	1.0	17
274	Tapping into spinal circuits to restore motor function. Brain Research Reviews, 1999, 30, 27-51.	9.1	186
275	Excitation of Central Nervous System Neurons by Nonuniform Electric Fields. Biophysical Journal, 1999, 76, 878-888.	0.2	296
276	Identification of the spinal neural network involved in coordination of micturition in the male cat. Brain Research, 1998, 796, 150-160.	1.1	25
277	Sensitivity analysis of a model of mammalian neural membrane. Biological Cybernetics, 1998, 79, 29-37.	0.6	43
278	Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes. Journal of Neuroscience Methods, 1996, 65, 43-50.	1.3	38
279	Electrical properties of implant encapsulation tissue. Annals of Biomedical Engineering, 1994, 22, 23-33.	1.3	310
280	Electrical impedance of electrode encapsulation tissue. , 1992, , .		1
281	Physics and biophysics fundamentals of transcranial stimulation. , 0, , .		4