Stuart A Forman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11512149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	γ-Aminobutyric Acid Type A Receptor Subtypes and Circuit Connections in Midazolam-induced Amnesia, Sedation, and Hypnosis. Anesthesiology, 2022, 136, 880-882.	1.3	0
2	Substituted Cysteine Modification and Protection with n-Alkyl- Methanethiosulfonate Reagents Yields a Precise Estimate of the Distance between Etomidate and a Residue in Activated GABA Type A Receptors. Molecular Pharmacology, 2021, 99, 426-434.	1.0	1
3	Selective actions of benzodiazepines at the transmembrane anaesthetic binding sites of the GABA _A receptor: <i>In vitro</i> and <i>in vivo</i> studies. British Journal of Pharmacology, 2021, 178, 4842-4858.	2.7	8
4	A potent photoreactive general anesthetic with novel binding site selectivity for GABAA receptors. European Journal of Medicinal Chemistry, 2020, 194, 112261.	2.6	3
5	Competitive Antagonism of Etomidate Action by Diazepam. Anesthesiology, 2020, 133, 583-594.	1.3	7
6	Monod-Wyman-Changeux Allosteric Shift Analysis in Mutant <i>î±</i> 1 <i>î²</i> 3 <i>î³</i> 2L GABA _A Receptors Indicates Selectivity and Crosstalk among Intersubunit Transmembrane Anesthetic Sites. Molecular Pharmacology, 2019, 95, 408-417.	1.0	18
7	Inhibitable photolabeling by neurosteroid diazirine analog in the β3-Subunit of human hetereopentameric type A GABA receptors. European Journal of Medicinal Chemistry, 2019, 162, 810-824.	2.6	7
8	Etomidate Effects on Desensitization and Deactivation of α4β3δ GABAA Receptors Inducibly Expressed in HEK293 TetR Cells. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 100-105.	1.3	8
9	Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABA _A Receptors. Molecular Pharmacology, 2018, 93, 178-189.	1.0	41
10	Comparison of $\hat{1} \pm \hat{1}^2 \hat{1}^2$ and $\hat{1} \pm \hat{1}^2 \hat{1}^3$ GABAA receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacological Research, 2018, 133, 289-300.	3.1	20
11	Alphaxalone Binds in Inner Transmembrane β+‑ʿαâ^' Interfaces of α1β3γ2 γ-Aminobutyric Acid Type A Recept Anesthesiology, 2018, 128, 338-351.	ors. 1.3	24
12	Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods in Enzymology, 2018, 602, 369-389.	0.4	5
13	Synthesis and pharmacological evaluation of neurosteroid photoaffinity ligands. European Journal of Medicinal Chemistry, 2017, 136, 334-347.	2.6	12
14	Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of $\hat{1}\pm1\hat{1}^23\hat{1}^3$ 2L GABAA Receptors. PLoS ONE, 2016, 11, e0154031.	1.1	21
15	A Cysteine Substitution Probes β3H267 Interactions with Propofol and Other Potent Anesthetics in α1β3γ2L γ-Aminobutyric Acid Type A Receptors. Anesthesiology, 2016, 124, 89-100.	1.3	13
16	Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesthesia and Analgesia, 2016, 123, 1263-1273.	1.1	64
17	Novel positive allosteric modulators of GABAA receptors with anesthetic activity. Scientific Reports, 2016, 6, 25943.	1.6	9
18	Tryptophan and Cysteine Mutations in M1 Helices of α1β3γ2L γ-Aminobutyric Acid Type A Receptors Indicate Distinct Intersubunit Sites for Four Intravenous Anesthetics and One Orphan Site. Anesthesiology, 2016, 125, 1144-1158.	1.3	35

#	Article	IF	CITATIONS
19	Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α ₁ β ₃ γ _{2L} GABA _A receptor account for their <i>in vivo</i> effects. Journal of Physiology, 2015, 593, 4943-4961.	1.3	8
20	Anesthetics target interfacial transmembrane sites in nicotinic acetylcholine receptors. Neuropharmacology, 2015, 96, 169-177.	2.0	38
21	Mutations at Beta N265 in Î ³ -Aminobutyric Acid Type A Receptors Alter Both Binding Affinity and Efficacy of Potent Anesthetics. PLoS ONE, 2014, 9, e111470.	1.1	30
22	Research at the Harvard Anesthesia Departments. Anesthesiology, 2014, 121, 1141-1143.	1.3	0
23	State-Dependent Etomidate Occupancy of Its Allosteric Agonist Sites Measured in a Cysteine-Substituted GABA _A Receptor. Molecular Pharmacology, 2013, 83, 1200-1208.	1.0	23
24	Cysteine Substitutions Define Etomidate Binding and Gating Linkages in the α-M1 Domain of γ-Aminobutyric Acid Type A (GABAA) Receptors. Journal of Biological Chemistry, 2013, 288, 30373-30386.	1.6	25
25	In Reply. Anesthesiology, 2013, 119, 996-996.	1.3	0
26	Monod–Wyman–Changeux allosteric mechanisms of action and the pharmacology of etomidate. Current Opinion in Anaesthesiology, 2012, 25, 411-418.	0.9	42
27	Pharmacological Studies of Methoxycarbonyl Etomidate's Carboxylic Acid Metabolite. Anesthesia and Analgesia, 2012, 115, 305-308.	1.1	36
28	Allylm-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic. Journal of Medicinal Chemistry, 2012, 55, 6554-6565.	2.9	46
29	Azoâ€Propofols: Photochromic Potentiators of GABA _A Receptors. Angewandte Chemie - International Edition, 2012, 51, 10500-10504.	7.2	124
30	An Allosteric Coagonist Model for Propofol Effects on α1β2γ2L γ-Aminobutyric Acid Type A Receptors. Anesthesiology, 2012, 116, 47-55.	1.3	58
31	Mutations in the GABAA Receptor that Mimic the Allosteric Ligand Etomidate. Methods in Molecular Biology, 2012, 796, 317-333.	0.4	15
32	Two Etomidate Sites in $\hat{l} \pm 1\hat{l}^2 2\hat{l}^3 2 \hat{l}^3$ -Aminobutyric Acid Type A Receptors Contribute Equally and Noncooperatively to Modulation of Channel Gating. Anesthesiology, 2012, 116, 1235-1244.	1.3	23
33	<i>p</i> -(4-Azipentyl)propofol: A Potent Photoreactive General Anesthetic Derivative of Propofol. Journal of Medicinal Chemistry, 2011, 54, 8124-8135.	2.9	35
34	Clinical and Molecular Pharmacology of Etomidate. Anesthesiology, 2011, 114, 695-707.	1.3	238
35	Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels. Canadian Journal of Anaesthesia, 2011, 58, 191-205.	0.7	90
36	Highâ€level expression and purification of Cysâ€loop ligandâ€gated ion channels in a tetracyclineâ€inducible stable mammalian cell line: GABA _A and serotonin receptors. Protein Science, 2010, 19, 1728-1738.	3.1	40

STUART A FORMAN

#	Article	IF	CITATIONS
37	Molecular Approaches to Improving General Anesthetics. Anesthesiology Clinics, 2010, 28, 761-771.	0.6	15
38	p-Trifluoromethyldiazirinyl-etomidate: A Potent Photoreactive General Anesthetic Derivative of Etomidate That Is Selective for Ligand-Gated Cationic Ion Channels. Journal of Medicinal Chemistry, 2010, 53, 6432-6444.	2.9	24
39	Carboetomidate. Anesthesiology, 2010, 112, 637-644.	1.3	88
40	Methoxycarbonyl-etomidate. Anesthesiology, 2009, 111, 240-249.	1.3	108
41	Time-Resolved Photolabeling of the Nicotinic Acetylcholine Receptor by [³ H]Azietomidate, an Open-State Inhibitor. Molecular Pharmacology, 2009, 75, 1084-1095.	1.0	29
42	Î ³ -Amino Butyric Acid Type A Receptor Mutations at β2N265 Alter Etomidate Efficacy While Preserving Basal and Agonist-dependent Activity. Anesthesiology, 2009, 111, 774-784.	1.3	55
43	Tryptophan Mutations at Azi-Etomidate Photo-Incorporation Sites on α ₁ or β ₂ Subunits Enhance GABA _A Receptor Gating and Reduce Etomidate Modulation. Molecular Pharmacology, 2008, 74, 1687-1695.	1.0	73
44	General Anesthetics and Molecular Mechanisms of Unconsciousness. International Anesthesiology Clinics, 2008, 46, 43-53.	0.3	45
45	Photo-activated Azi-Etomidate, a General Anesthetic Photolabel, Irreversibly Enhances Gating and Desensitization of γ-Aminobutyric Acid Type A Receptors. Anesthesiology, 2008, 108, 103-112.	1.3	23
46	Differential Effects of Serotonin and Dopamine on Human 5-HT _{3A} Receptor Kinetics: Interpretation within an Allosteric Kinetic Model. Journal of Neuroscience, 2007, 27, 13151-13160.	1.7	46
47	Photoactivated 3-Azioctanol Irreversibly Desensitizes Muscle Nicotinic ACh Receptors via Interactions at αE262. Biochemistry, 2007, 46, 11911-11918.	1.2	18
48	Synthesis of Trifluoromethylaryl Diazirine and Benzophenone Derivatives of Etomidate that Are Potent General Anesthetics and Effective Photolabels for Probing Sites on Ligand-Gated Ion Channels. Journal of Medicinal Chemistry, 2006, 49, 4818-4825.	2.9	43
49	Awareness during general anesthesia: concepts and controversies. Seminars in Anesthesia, 2006, 25, 211-218.	0.3	6
50	Classic Benzodiazepines Modulate the Open–Close Equilibrium in α1β2γ2Lγ-Aminobutyric Acid Type A Receptors. Anesthesiology, 2005, 102, 783-792.	1.3	67
51	Mechanisms of general anesthesia: from molecules to mind. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2005, 19, 349-364.	1.7	69
52	Gating-enhanced Accessibility of Hydrophobic Sites within the Transmembrane Region of the Nicotinic Acetylcholine Receptor's δ-Subunit. Journal of Biological Chemistry, 2005, 280, 13631-13640.	1.6	47
53	Irreversible modulation of GABAA receptors by azi-etomidate, a photo-reactive general anesthetic. International Congress Series, 2005, 1283, 271-272.	0.2	1
54	Interpreting the impact of GABAA receptor structural modifications using an allosteric co-agonist mechanism for etomidate actions. International Congress Series, 2005, 1283, 288-289.	0.2	0

STUART A FORMAN

#	Article	IF	CITATIONS
55	Equilibrium and kinetic allosteric mechanisms for anesthetic and structure function studies of GABAA receptors. International Congress Series, 2005, 1283, 32-37.	0.2	0
56	Gating Allosterism at a Single Class of Etomidate Sites on α1β2γ2L GABAA Receptors Accounts for Both Direct Activation and Agonist Modulation. Journal of Biological Chemistry, 2004, 279, 20982-20992.	1.6	107
57	Mechanisms of Actions of Inhaled Anesthetics. New England Journal of Medicine, 2003, 348, 2110-2124.	13.9	710
58	2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate:Â A Derivative of the Stereoselective General Anesthetic Etomidate for Photolabeling Ligand-Gated Ion Channels. Journal of Medicinal Chemistry, 2003, 46, 1257-1265.	2.9	83
59	Nonhalogenated Anesthetic Alkanes and Perhalogenated Nonimmobilizing Alkanes Inhibit α4β2 Neuronal Nicotinic Acetylcholine Receptors. Anesthesia and Analgesia, 2002, 95, 573-577.	1.1	22
60	Coupled and Uncoupled Gating and Desensitization Effects by Pore Domain Mutations in GABA _A Receptors. Journal of Neuroscience, 2002, 22, 8411-8421.	1.7	74
61	Butanol effects on γ-amino butyric acid concentration-responses in human α1β2γ2L γ-amino butyric acid type A receptors with a mutation at α1S270. Neuroscience Letters, 2001, 297, 179-182.	1.0	5
62	Nicotinic Receptor Pore Mutations Create a Sensitive Inhibitory Site for Ethanol. Alcoholism: Clinical and Experimental Research, 2000, 24, 1363-1368.	1.4	18
63	The n-Alcohol Site in the Nicotinic Receptor Pore Is a Hydrophobic Patch. Biochemistry, 2000, 39, 14920-14926.	1.2	41
64	Nicotinic Receptor Pore Mutations Create a Sensitive Inhibitory Site for Ethanol. , 2000, 24, 1363.		1
65	Synthesis and Properties of 3-(2-Hydroxyethyl)-3-n-pentyldiazirine, a Photoactivable General Anesthetic. Journal of Medicinal Chemistry, 1999, 42, 3300-3307.	2.9	43
66	A Hydrophobic Photolabel Inhibits Nicotinic Acetylcholine Receptors via Open-Channel Block Following a Slow Step. Biochemistry, 1999, 38, 14559-14564.	1.2	31
67	Novel Modulation of a Nicotinic Receptor Channel Mutant Reveals that the Open State Is Stabilized by Ethanol. Molecular Pharmacology, 1999, 55, 102-108.	1.0	37
68	Direct interactions of anesthetics and nonanesthetics with the nicotinic acetylcholine receptor pore. Toxicology Letters, 1998, 100-101, 169-178.	0.4	5
69	The Nicotinic Acetylcholine Receptor in Its Membrane Environment. Annals of the New York Academy of Sciences, 1991, 625, 600-614.	1.8	9
70	Molecular sites of anestheticaction in postsynaptic nicotinic membranes. Trends in Pharmacological Sciences, 1989, 10, 447-452.	4.0	53
71	Procaine rapidly inactivates acetylcholine receptor from Torpedo and competes with agonist for inhibition sites. Biochemistry, 1989, 28, 1678-1685.	1.2	20
72	General Anesthetic and Specific Effects of Ethanol on Acetylcholine Receptors. Annals of the New York Academy of Sciences, 1987, 492, 71-87.	1.8	31

#	Article	IF	CITATIONS
73	ls agonist self-inhibition at the nicotinic acetylcholine receptor a nonspecific action?. Biochemistry, 1987, 26, 2807-2814.	1.2	29