Milan R Dimitrijevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11511796/publications.pdf

Version: 2024-02-01

30 2,278 19 29 g-index

31 31 31 31 1519

31 31 31 1519 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. Experimental Brain Research, 2021, 239, 2605-2620.	1.5	4
2	Spinal cord injuries, human neuropathology and neurophysiology. Acta Myologica, 2020, 39, 353-358.	1.5	1
3	Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury. Current Opinion in Neurology, 2016, 29, 721-726.	3. 6	40
4	Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement. Advances in Experimental Medicine and Biology, 2016, 957, 159-171.	1.6	9
5	Neurocontrol of Movement in Humans With Spinal Cord Injury. Artificial Organs, 2015, 39, 823-833.	1.9	39
6	Locomotor rhythm and pattern generating networks of the human lumbar spinal cord: an electrophysiological and computer modeling study. BMC Neuroscience, 2013, 14, .	1.9	2
7	Outline of restorative neurology: Definition, clinical practice, assessment, intervention. Clinical Neurology and Neurosurgery, 2012, 114, 428-431.	1.4	6
8	Stimulation of the Human Lumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 637-645.	4.9	183
9	Clinical Practice of Functional Electrical Stimulation: From "Yesterday―to "Today― Artificial Organs, 2008, 32, 577-580.	1.9	13
10	Posterior root–muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle and Nerve, 2007, 35, 327-336.	2.2	204
11	Dr Leon Sebastian Illis, MD, BSc, FRCP. Spinal Cord, 2006, 44, 337-338.	1.9	O
12	Motor Control in the Human Spinal Cord. Artificial Organs, 2005, 29, 216-219.	1.9	19
13	Frequency-dependent selection of alternative spinal pathways with common periodic sensory input. Biological Cybernetics, 2004, 91, 359-376.	1.3	33
14	Evidence for a Spinal Central Pattern Generator in Humansa. Annals of the New York Academy of Sciences, 1998, 860, 360-376.	3.8	688
15	Effect of fatiguing maximal voluntary contraction on excitatory and inhibitory responses elicited by transcranial magnetic motor cortex stimulation. Muscle and Nerve, 1996, 19, 1017-1024.	2.2	77
16	Early and late motor evoked potentials reflect preset agonist-antagonist organization in lower limb muscles. Muscle and Nerve, 1995, 18, 276-282.	2.2	10
17	Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study. Experimental Brain Research, 1995, 105, 276-282.	1.5	115
18	Clinical aspects of traumatic injury to central nervous system axons., 1995,, 669-680.		4

#	Article	IF	CITATIONS
19	Surface and Epidural Lumbosacral Spinal Cord Evoked Potentials in Chronic Spinal Cord Injury. Journal of Neurotrauma, 1993, 10, 315-326.	3.4	1
20	Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. Journal of the Neurological Sciences, 1992, 110, 90-98.	0.6	190
21	Muscle fatigue in some neurological disorders. Muscle and Nerve, 1989, 12, 938-942.	2.2	84
22	Central dysesthesia syndrome in spinal cord injury patients. Pain, 1988, 34, 109-116.	4.2	199
23	Model for the Study of Plasticity of the Human Nervous System: Features of Residual Spinal Cord Motor Activity Resulting from Established Posttraumatic Injury. Novartis Foundation Symposium, 1988, 138, 227-239.	1.1	1
24	Neurophysiology in spinal cord injury. Spinal Cord, 1987, 25, 205-208.	1.9	35
25	Voluntary supraspinal suppression of spinal reflex activity in paralyzed muscles of spinal cord injury patients. Experimental Neurology, 1986, 93, 574-583.	4.1	32
26	Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Annals of Neurology, 1984, 16, 216-221.	5.3	115
27	Electrophysiological characteristics of lumbosacral evoked potentials in patients with established spinal cord injury. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1984, 59, 142-155.	2.0	30
28	Somatosensory perception and cortical evoked potentials in established paraplegia. Journal of the Neurological Sciences, 1983, 60, 253-265.	0.6	23
29	Neurophysiological approaches to chronic pain following spinal cord injury. Spinal Cord, 1982, 20, 135-146.	1.9	66
30	Postural Control in Scoliosis: A Statokinesimetric Study in Patients with Scoliosis due to Neuromuscular Disorders and in Patients with Idiopathic Scoliosis. Acta Orthopaedica, 1981, 52, 59-63.	1.4	34