
Yuxuan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11511019/publications.pdf Version: 2024-02-01

ΥΠΧΠΑΝ Μ/Π

#	Article	IF	CITATIONS
1	DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. PLoS ONE, 2022, 17, e0263829.	2.5	6
2	Gonadal mosaicism mediated female-biased gender control in mice. Protein and Cell, 2022, 13, 863-868.	11.0	2
3	5'-UTR SNP of FGF13 causes translational defect and intellectual disability. ELife, 2021, 10, .	6.0	9
4	Combined +58 and +55 <i>BCL11A</i> enhancer Editing Yields Exceptional Efficiency, Specificity and HbF Induction in Human and NHP Preclinical Models. Blood, 2021, 138, 1852-1852.	1.4	1
5	Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology, 2020, 22, 740-750.	10.3	69
6	Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology, 2020, 38, 856-860.	17.5	165
7	Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020, 26, 535-541.	30.7	196
8	BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. Journal of Clinical Investigation, 2020, 130, 6677-6687.	8.2	54
9	Targeted genetic screening in mice through haploid embryonic stem cells identifies critical genes in bone development. PLoS Biology, 2019, 17, e3000350.	5.6	15
10	Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood, 2019, 133, 2255-2262.	1.4	57
11	Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature Medicine, 2019, 25, 776-783.	30.7	344
12	Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Advances, 2019, 3, 3379-3392.	5.2	121
13	Gene Editing ELANE in Human Hematopoietic Stem and Progenitor Cells Reveals Disease Mechanisms and Therapeutic Strategies for Severe Congenital Neutropenia. Blood, 2019, 134, 3-3.	1.4	8
14	CRISPR-Cas9 Genome Editing of Î ³ -Globin Promoters in Human Hematopoietic Stem Cells to Induce Erythrocyte Fetal Hemoglobin for Treatment of Î ² -Hemoglobinopathies. Blood, 2019, 134, 2066-2066.	1.4	1
15	An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature Biotechnology, 2018, 36, 977-982.	17.5	328
16	Highly Efficient Therapeutic Gene Editing of BCL11A enhancer in Human Hematopoietic Stem Cells from ÃY-Hemoglobinopathy Patients for Fetal Hemoglobin Induction. Blood, 2018, 132, 3482-3482.	1.4	2
17	Comprehensive Integrated Genomic Perturbations Reveal Molecular Mechanisms of Red Blood Cell Trait Associations. Blood, 2018, 132, 532-532.	1.4	0
18	Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nature Genetics, 2017, 49, 625-634.	21.4	96

Yuxuan Wu

#	Article	IF	CITATIONS
19	Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9. Journal of Genetics and Genomics, 2016, 43, 289-296.	3.9	5
20	Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Research, 2016, 26, 131-134.	12.0	38
21	Arabidopsis <scp>PLC</scp> 2 is involved in auxinâ€modulated reproductive development. Plant Journal, 2015, 84, 504-515.	5.7	57
22	RopGEF2 is involved in ABAâ€suppression of seed germination and postâ€germination growth of <i>Arabidopsis</i> . Plant Journal, 2015, 84, 886-899.	5.7	23
23	CRISPR-Cas9-Mediated Genetic Screening in Mice with Haploid Embryonic Stem Cells Carrying a Guide RNA Library. Cell Stem Cell, 2015, 17, 221-232.	11.1	91
24	Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nature Communications, 2015, 6, 6830.	12.8	25
25	Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25, 67-79.	12.0	209
26	Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9. Cell Stem Cell, 2013, 13, 659-662.	11.1	541
27	CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells. Journal of Experimental Botany, 2013, 64, 3327-3338.	4.8	31