
Steven W Leavitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11509624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience, 2008, 58, 811-821.	4.9	959
2	Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the United States of America, 2010, 107, 21289-21294.	7.1	442
3	Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry, 1993, 65, 87-89.	6.5	377
4	Stable-Carbon Isotope Variability in Tree Foliage and Wood. Ecology, 1986, 67, 1002-1010.	3.2	198
5	Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia, 2002, 132, 332-343.	2.0	192
6	Tree-ring C–H–O isotope variability and sampling. Science of the Total Environment, 2010, 408, 5244-5253.	8.0	187
7	Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature, 1984, 311, 145-147.	27.8	186
8	Evidence for 13C/12C fractionation between tree leaves and wood. Nature, 1982, 298, 742-744.	27.8	158
9	Variations of Wood δ 13 C and Water-Use Efficiency of Abies Alba During the Last Century. Ecology, 1997, 78, 1588.	3.2	132
10	A dynamic leaf gasâ€exchange strategy is conserved in woody plants under changing ambient CO ₂ : evidence from carbon isotope discrimination in paleo and CO ₂ enrichment studies. Global Change Biology, 2016, 22, 889-902.	9.5	106
11	Climate and Diet in Fremont Prehistory: Economic Variability and Abandonment of Maize Agriculture in the Great Salt Lake Basin. American Antiquity, 2002, 67, 453-485.	1.1	98
12	Stable carbon isotope chronologies from trees in the southwestern United States. Global Biogeochemical Cycles, 1988, 2, 189-198.	4.9	95
13	Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology: Isotope Geoscience Section, 1991, 87, 59-70.	0.6	87
14	Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30Âyears. Oecologia, 2011, 167, 573-585.	2.0	86
15	Carbon isotope dynamics of free-air CO2-enriched cotton and soils. Agricultural and Forest Meteorology, 1994, 70, 87-101.	4.8	83
16	Tree-ring isotopic pooling without regard to mass: No difference from averaging δ13C values of each tree. Chemical Geology, 2008, 252, 52-55.	3.3	82
17	DROUGHT INDICATED IN CARBON-13/CARBON-12 RATIOS OF SOUTHWESTERN TREE RINGS. Journal of the American Water Resources Association, 1989, 25, 341-347.	2.4	78
18	Spatial expression of ENSO, drought, and summer monsoon in seasonal δ13C of ponderosa pine tree rings in southern Arizona and New Mexico. Journal of Geophysical Research, 2002, 107, ACL 3-1.	3.3	67

STEVEN W LEAVITT

#	Article	IF	CITATIONS
19	Consequences of a Rapid Cellulose Extraction Technique for Oxygen Isotope and Radiocarbon Analyses. Analytical Chemistry, 2008, 80, 2035-2041.	6.5	57
20	Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1978-1991.	3.0	57
21	Stable carbon isotopes of tree rings as a tool to pinpoint the geographic origin of timber. Journal of Wood Science, 2010, 56, 175-183.	1.9	56
22	Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree-ring δ18O and δD. Climate Dynamics, 2014, 42, 2639-2654.	3.8	56
23	A preliminary seasonal precipitation reconstruction from tree-ring stable carbon isotopes at Mt. Helan, China, since AD 1804. Global and Planetary Change, 2004, 41, 229-239.	3.5	54
24	Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using treeâ€ring stable isotopes. Global Change Biology, 2018, 24, 5332-5347.	9.5	52
25	VARIATIONS OF WOOD Î'13C AND WATER-USE EFFICIENCY OFABIES ALBADURING THE LAST CENTURY. Ecology, 1997, 78, 1588-1596.	3.2	51
26	Prospects for reconstruction of seasonal environment from tree-ring δ13C: baseline findings from the Great Lakes area, USA. Chemical Geology, 2002, 192, 47-58.	3.3	46
27	Tree-ring stable carbon isotope-based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quaternary Science Reviews, 2014, 93, 67-76.	3.0	45
28	Major wet interval in white mountains medieval warm period evidenced in? 13C of bristlecone pine tree rings. Climatic Change, 1994, 26, 299-307.	3.6	43
29	South American tree rings show declining δ ¹³ C trend. Tellus, Series B: Chemical and Physical Meteorology, 2022, 46, 152.	1.6	41
30	Using Tree Rings to Predict the Response of Tree Growth to Climate Change in the Continental United States during the Twenty-First Century. Earth Interactions, 2010, 14, 1-20.	1.5	40
31	Individual and pooled tree-ring stable-carbon isotope series in Chinese pine from the Nan Wutai region, China: Common signal and climate relationships. Chemical Geology, 2012, 330-331, 17-26.	3.3	40
32	Paleoclimatic significance of ÎƊ and Îʿ13C values in piñon pine needles from packrat middens spanning the last 40,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 147, 53-72.	2.3	39
33	Stable-Carbon Isotopic Composition of Maple Sap and Foliage. Plant Physiology, 1985, 78, 427-429.	4.8	38
34	Comparison of measured and modeled variations in piñon pine leaf water isotopic enrichment across a summer moisture gradient. Oecologia, 2005, 145, 605-618.	2.0	33
35	Influence of earlywood–latewood size and isotope differences on long-term tree-ring δ13C trends. Chemical Geology, 2005, 216, 191-201.	3.3	30
36	Leaf cellulose ÎƊ and δ180 trends with elevation differ in direction among co-occurring, semiarid plant species. Geochimica Et Cosmochimica Acta, 2002, 66, 3887-3900.	3.9	28

STEVEN W LEAVITT

#	Article	IF	CITATIONS
37	Progress in isotope dendroclimatology. Chemical Geology, 2008, 252, EX1-EX4.	3.3	28
38	Past the climate optimum: Recruitment is declining at the world's highest juniper shrublines on the Tibetan Plateau. Ecology, 2019, 100, e02557.	3.2	27
39	Deglacial Hydroclimate of Midcontinental North America. Quaternary Research, 2015, 83, 336-344.	1.7	26
40	Boundary layer humidity reconstruction for a semiarid location from tree ring cellulose δ180. Journal of Geophysical Research, 2006, 111, .	3.3	25
41	Regional expression of the 1988 U.S. Midwest drought in seasonall 13C of tree rings. Journal of Geophysical Research, 2007, 112, .	3.3	23
42	Tree taxa and pyrolysis temperature interact to control the efficacy of pyrogenic organic matter formation. Biogeochemistry, 2016, 130, 103-116.	3.5	22
43	Climate in the Great Lakes Region Between 14,000 and 4000 Years Ago from Isotopic Composition of Conifer Wood. Radiocarbon, 2006, 48, 205-217.	1.8	19
44	Needle cell elongation and maturation timing derived from pine needle cellulose delta180. Plant, Cell and Environment, 2006, 29, 1-14.	5.7	19
45	Annually resolved temperature reconstructions from a late Pliocene–early Pleistocene polar forest on Bylot Island, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369, 313-322.	2.3	18
46	Environment and paleoecology of a 12 ka mid-North American Younger Dryas forest chronicled in tree rings. Quaternary Research, 2008, 70, 433-441.	1.7	16
47	Environmental information from13C/12C Ratios of Wood. Geophysical Monograph Series, 2013, , 325-331.	0.1	16
48	An atmospheric ¹³ C/ ¹² C reconstruction generated through removal of climate effects from tree-ring ¹³ C ¹² C measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 35, 92.	1.6	14
49	Tree-ring δ180 from Southeast China reveals monsoon precipitation and ENSO variability. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 558, 109954.	2.3	14
50	A multiproxy environmental investigation of Holocene wood from a submerged conifer forest in Lake Huron, USA. Quaternary Research, 2006, 66, 67-77.	1.7	13
51	A Single-Year δ13C Chronology from Pinus Tabulaeformis (Chinese Pine) Tree Rings at Huangling, China. Radiocarbon, 1995, 37, 605-610.	1.8	12
52	Isotopes as Indicators of Environmental Change. , 1998, , 761-816.		12
53	Environment in Time and Space: Opportunities from Tree-Ring Isotope Networks. , 2010, , 113-135.		10
54	Major Wet Interval in White Mountains Medieval Warm Period Evidenced in δ13C of Bristlecone Pine		9

Tree Rings. , 1994, , 299-307.

STEVEN W LEAVITT

#	Article	IF	CITATIONS
55	Comparison of stable-carbon isotope composition in the growth rings of Isorberlinia doka, Daniella oliveri, and Tamarindus indica and West African climate. Dendrochronologia, 2004, 22, 61-70.	2.2	7
56	El Riego and Early Maize Agricultural Evolution. , 2006, , 73-82.		7
57	Radiocarbon "Wiggles―in Great Lakes Wood at About 10,000 to 12,000 BP. Radiocarbon, 2007, 49, 855-864.	1.8	6
58	A 1400-Year BÃ,lling-AllerÃ,d Tree-Ring Record from the U.S. Great Lakes Region. Tree-Ring Research, 2017, 73, 102-112.	0.6	4
59	Intra-annual tree-ring isotope variations: do they occur when environment remains constant?. Trees - Structure and Function, 0, , .	1.9	3
60	Possible climatic response of δ13C in leaf cellulose of pinyon pine in Arizona, U.S.A Chemical Geology, 1983, 41, 169-180.	3.3	2
61	Isotope Dendrochronology: Historical Perspective. Tree Physiology, 2022, , 3-20.	2.5	1
62	Tree-Ring Investigation of Holocene Flood-Deposited Wood From the Oneida Lake Watershed, New York State. Tree-Ring Research, 2015, 71, 83-94.	0.6	0