
David A Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11509301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testosterone, Athletic Context, Oral Contraceptive Use, and Competitive Persistence in Women. Adaptive Human Behavior and Physiology, 2022, 8, 52-78.	1.1	5
2	Hormone and enzyme reactivity before, during, and after a music performance: Cortisol, testosterone, and alpha-amylase. Comprehensive Psychoneuroendocrinology, 2022, 9, 100111.	1.7	4
3	Individual differences in hormonal responsiveness to social encounters: Commentary on Félix et al., 2020 and review of pertinent issues. Hormones and Behavior, 2021, 129, 104921.	2.1	5
4	Within-person coupling of estradiol, testosterone, and cortisol in women athletes. PeerJ, 2020, 8, e8402.	2.0	6
5	Testosterone and Cortisol Interact to Predict Within-Team Social Status Hierarchy among Olympic-Level Women Athletes. Adaptive Human Behavior and Physiology, 2019, 5, 237-250.	1.1	7
6	Introduction to the special issue on human competition. Hormones and Behavior, 2017, 92, 1-2.	2.1	1
7	Competition-related testosterone, cortisol, and perceived personal success in recreational women athletes. Hormones and Behavior, 2017, 92, 29-36.	2.1	17
8	Testosterone, cortisol, and human competition. Hormones and Behavior, 2016, 82, 21-37.	2.1	165
9	Testosterone and Reconciliation Among Women: After-Competition Testosterone Predicts Prosocial Attitudes Towards Opponents. Adaptive Human Behavior and Physiology, 2016, 2, 220-233.	1.1	18
10	Before, During, and After: How Phases of Competition Differentially Affect Testosterone, Cortisol, and Estradiol Levels in Women Athletes. Adaptive Human Behavior and Physiology, 2016, 2, 11-25.	1.1	40
11	Baseline cortisol moderates testosterone reactivity to women's intercollegiate athletic competition. Physiology and Behavior, 2015, 142, 48-51.	2.1	21
12	Women's intercollegiate athletic competition: Cortisol, testosterone, and the dual-hormone hypothesis as it relates to status among teammates. Hormones and Behavior, 2013, 64, 153-160.	2.1	83
13	Women's intercollegiate volleyball and tennis: Effects of warm-up, competition, and practice on saliva levels of cortisol and testosterone. Hormones and Behavior, 2010, 58, 606-613.	2.1	68
14	Oral contraceptives decrease saliva testosterone but do not affect the rise in testosterone associated with athletic competition. Hormones and Behavior, 2009, 56, 195-198.	2.1	59
15	Competition and testosterone. Hormones and Behavior, 2006, 50, 681-683.	2.1	26
16	Intercollegiate soccer: Saliva cortisol and testosterone are elevated during competition, and testosterone is related to status and social connectedness with teammates. Physiology and Behavior, 2006, 87, 135-143.	2.1	156
17	Colocalization of androgen receptors and mating-induced FOS immunoreactivity in neurons that project to the central tegmental field in male rats. Journal of Comparative Neurology, 1999, 408, 220-236.	1.6	30
18	Androgen receptor and mating-induced Fos immunoreactivity are co-localized in limbic and midbrain neurons that project to the male rat medial preoptic area. Brain Research, 1998, 781, 15-24.	2.2	60

DAVID A EDWARDS

#	Article	IF	CITATIONS
19	Fos Induced by Mating or Noncontact Sociosexual Interaction Is Colocalized with Androgen Receptors in Neurons within the Forebrain, Midbrain, and Lumbosacral Spinal Cord of Male Rats. Hormones and Behavior, 1998, 33, 125-138.	2.1	66
20	Androgen Receptors and Estrogen Receptors Are Colocalized in Male Rat Hypothalamic and Limbic Neurons that Express Fos Immunoreactivity Induced by Mating. Neuroendocrinology, 1998, 67, 18-28.	2.5	106
21	Deafferentation of the Olfactory Bulbs of Male Rats Reduces Erection to Remote Cues from Females. Physiology and Behavior, 1997, 62, 145-149.	2.1	36
22	Hypothalamic and Olfactory Control of Sexual Behavior and Partner Preference in Male Rats. Physiology and Behavior, 1996, 60, 1347-1354.	2.1	57
23	Preoptic and subthalamic connections with the caudal brainstem are important for copulation in the male rat Behavioral Neuroscience, 1994, 108, 758-766.	1.2	19
24	Pathways linking the olfactory bulbs with the medial preoptic anterior hypothalamus are important for intermale aggression in mice. Physiology and Behavior, 1993, 53, 611-615.	2.1	38
25	Intermale aggression in mice: Does hour of castration after birth influence adult behavior?. Physiology and Behavior, 1993, 53, 1017-1019.	2.1	39
26	Zona incerta lesions: effects on copulation, partner-preference and other socio-sexual behaviors. Behavioural Brain Research, 1991, 44, 145-150.	2.2	40
27	Excitotoxin lesions of the zona incerta/lateral tegmentum continuum: effects on male sexual behavior in rats. Behavioural Brain Research, 1991, 46, 143-149.	2.2	41
28	Connections between the pontine central gray and the ventromedial hypothalamus are essential for lordosis in female rats Behavioral Neuroscience, 1990, 104, 477-488.	1.2	49
29	Computer-assisted analysis of behavior-brain damage relationships. Physiology and Behavior, 1990, 48, 189-193.	2.1	9
30	Olfactory bulb removal: Effects on sexual behavior and partner-preference in male rats. Physiology and Behavior, 1990, 48, 447-450.	2.1	67
31	Subthalamic and mesencephalic locomotor regions: Brain damage augments the importance of female movement for the display of sexual behavior in male rats. Physiology and Behavior, 1988, 44, 803-809.	2.1	30
32	Testicular hormones during the first few hours after birth augment the tendency of adult male rats to mount receptive females. Physiology and Behavior, 1987, 39, 625-628.	2.1	46
33	Midbrain lesions, dopamine and male sexual behavior. Behavioural Brain Research, 1986, 20, 231-240.	2.2	67
34	Preoptic and midbrain control of sexual motivation. Physiology and Behavior, 1986, 37, 329-335.	2.1	126
35	Preoptic lesions increase the display of lordosis by male rats. Brain Research, 1986, 370, 21-28.	2.2	78
36	Medial preoptic connections with the midbrain tegmentum are essential for male sexual behavior. Physiology and Behavior, 1984, 32, 79-84.	2.1	86

3

DAVID A EDWARDS

#	Article	IF	CITATIONS
37	Hormonal control of receptivity, proceptivity and sexual motivation. Physiology and Behavior, 1983, 30, 437-443.	2.1	107
38	Hypothalamic and midbrain control of sexual receptivity in the female rat. Physiology and Behavior, 1981, 26, 1061-1067.	2.1	52
39	Ventromedial hypothalamic damage and sexual proceptivity in female rats. Physiology and Behavior, 1981, 27, 597-602.	2.1	68
40	Parasagittal hypothalamic knife cuts and sexual receptivity in the female rat. Physiology and Behavior, 1980, 24, 145-150.	2.1	38
41	Hypothalamic destruction and mouse aggression. Physiological Psychology, 1978, 6, 485-487.	0.8	8
42	The ventromedial nucleus of the hypothalamus and the hormonal arousal of sexual behaviors in the female rat. Hormones and Behavior, 1977, 8, 40-51.	2.1	105
43	Involvement of the ventromedial and anterior hypothalamic nuclei in the hormonal induction of receptivity in the female rat. Physiology and Behavior, 1977, 19, 319-326.	2.1	136
44	Olfactory system damage and brain catecholamines in the rat. Brain Research, 1977, 121, 121-130.	2.2	38
45	Olfactory bulb removal results in elevated spontaneous locomotor activity in mice. Physiology and Behavior, 1976, 16, 83-89.	2.1	16
46	Neural and Endocrine Control of Aggressive Behavior. , 1975, , 275-303.		22
47	Non-sensory involvement of the olfactory bulbs in the mediation of social behaviors. Behavioral Biology, 1974, 11, 287-302.	2.2	72
48	Olfactory control of the sexual behavior of male and female mice. Physiology and Behavior, 1973, 11, 867-872.	2.1	68
49	Olfactory bulb removal produces a selective deficit in behavioral thermoregulation. Physiology and Behavior, 1972, 9, 747-752.	2.1	19
50	Olfactory bulb removal: Influences on the mating behavior of male mice. Physiology and Behavior, 1972, 8, 37-41.	2.1	97
51	Olfactory bulb ablation and hormonally induced mating in spayed female mice. Physiology and Behavior, 1972, 8, 1141-1146.	2.1	41
52	Olfactory bulb removal vs peripherally induced anosmia: Differential effects on the aggressive behavior of male mice. Behavioral Biology, 1972, 7, 823-828.	2.2	85
53	Neonatal administration of androstenedione, testosterone or testosterone propionate: Effects on ovulation, sexual receptivity and aggressive behavior in female mice. Physiology and Behavior, 1971, 6, 223-228.	2.1	72
54	The adrenal gland and the pre and post castrational aggressive behavior of male mice. Physiology and Behavior, 1971, 7, 885-888.	2.1	25

DAVID A EDWARDS

#	Article	IF	CITATIONS
55	Olfactory bulb removal: Influences on the aggressive behaviors of male mice. Physiology and Behavior, 1971, 7, 889-892.	2.1	81
56	Experiential and strain determinants of the estrogen-progesterone induction of sexual receptivity in spayed female mice. Hormones and Behavior, 1971, 2, 299-305.	2.1	41
57	Induction of estrus in female mice: Estrogen-progesterone interactions. Hormones and Behavior, 1970, 1, 299-304.	2.1	66
58	Neonatal estrogen stimulation and aggressive behavior in female mice. Physiology and Behavior, 1970, 5, 993-995.	2.1	56
59	Neonatal androgenization and estrogenization and the hormonal induction of sexual receptivity in rats. Physiology and Behavior, 1970, 5, 1115-1119.	2.1	40
60	Post-neonatal androgenization and adult aggressive behavior in female mice. Physiology and Behavior, 1970, 5, 465-467.	2.1	72
61	Early androgen treatment and male sexual behavior in female rats. Physiology and Behavior, 1969, 4, 33-39.	2.1	54
62	Early androgen stimulation and aggressive behavior in male and female mice. Physiology and Behavior, 1969, 4, 333-338.	2.1	222
63	Hormonal determinants of the development of masculine and feminine behavior in male and female rats. The Anatomical Record, 1967, 157, 173-180.	1.8	209
64	Sexual reversibility in neonatally castrated male rats Journal of Comparative and Physiological Psychology, 1966, 62, 307-310.	1.8	32