Young Hee Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150814/publications.pdf

Version: 2024-02-01

6592 5663 28,803 313 79 162 citations h-index papers

g-index 328 328 328 32609 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum Sensing of Thermoelectric Power in Lowâ€Dimensional Materials. Advanced Materials, 2023, 35, e2106871.	11.1	6
2	Locally enhanced light–matter interaction of MoS2 monolayers at density-controllable nanogrooves of template-stripped Ag films. Current Applied Physics, 2022, 33, 59-65.	1.1	6
3	Escalating Ferromagnetic Order via Seâ€Vacancies Near Vanadium in WSe ₂ Monolayers. Advanced Materials, 2022, 34, e2106551.	11.1	20
4	Non-oxidized bare copper nanoparticles with surface excess electrons in air. Nature Nanotechnology, 2022, 17, 285-291.	15.6	34
5	Unusually large exciton binding energy in multilayered 2H-MoTe2. Scientific Reports, 2022, 12, 4543.	1.6	11
6	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	7.3	0
7	Large-scale synthesis of graphene and other 2D materials towards industrialization. Nature Communications, 2022, 13, 1484.	5.8	123
8	Flat-surface-assisted and self-regulated oxidation resistance of Cu(111). Nature, 2022, 603, 434-438.	13.7	59
9	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
10	Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. Advanced Science, 2022, 9, .	5.6	17
11	Sequential Growth of Vertical Transition-Metal Dichalcogenide Heterostructures on Rollable Aluminum Foil. ACS Nano, 2022, 16, 8851-8859.	7.3	8
12	Andreev Reflection in the Fractional Quantum Hall State. Physical Review X, 2022, 12, .	2.8	22
13	Carbon nanotube (CNT) metal composites exhibit greatly reduced radiation damage. Acta Materialia, 2021, 203, 116483.	3.8	23
14	Identifying Defect-Induced Trion in Monolayer WS ₂ <i>via</i> Carrier Screening Engineering. ACS Nano, 2021, 15, 2849-2857.	7.3	23
15	Band restructuring of ordered/disordered blue TiO ₂ for visible light photocatalysis. Journal of Materials Chemistry A, 2021, 9, 4822-4830.	5.2	17
16	Hot carrier photovoltaics in van der Waals heterostructures. Nature Reviews Physics, 2021, 3, 178-192.	11.9	77
17	Probing giant Zeeman shift in vanadium-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W</mml:mi><mml:msub><mml:mi>Se</mml:mi><mml:mn>2</mml:mn></mml:msub>< via resonant magnetotunneling transport. Physical Review B. 2021. 103</mml:mrow></mml:math>	/mml:mrov	w>₹/mml:m <mark>at</mark>
18	Ideal PN photodiode using doping controlled WSe ₂ â€"MoSe ₂ lateral heterostructure. Journal of Materials Chemistry C, 2021, 9, 3504-3512.	2.7	16

#	Article	IF	CITATIONS
19	Escalated Photocurrent with Excitation Energy in Dual-Gated MoTe ₂ . Nano Letters, 2021, 21, 1976-1981.	4.5	8
20	Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nature Communications, 2021, 12, 938.	5.8	33
21	Fabrication of 1D Te/2D ReS ₂ Mixed-Dimensional van der Waals <i>p-n</i> Heterojunction for High-Performance Phototransistor. ACS Nano, 2021, 15, 3241-3250.	7.3	91
22	Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. Nature Nanotechnology, 2021, 16, 563-569.	15.6	48
23	Harnessing Thermoelectric Puddles <i>via</i> the Stacking Order and Electronic Screening in Graphene. ACS Nano, 2021, 15, 5397-5404.	7.3	3
24	Two-Dimensional Cold Electron Transport for Steep-Slope Transistors. ACS Nano, 2021, 15, 5762-5772.	7.3	20
25	Evidence of itinerant holes for long-range magnetic order in the tungsten diselenide semiconductor with vanadium dopants. Physical Review B, 2021, 103 , .	1.1	16
26	Epitaxial Singleâ€Crystal Growth of Transition Metal Dichalcogenide Monolayers via the Atomic Sawtooth Au Surface. Advanced Materials, 2021, 33, e2006601.	11.1	55
27	Color of Copper/Copper Oxide. Advanced Materials, 2021, 33, e2007345.	11.1	28
28	Selective Pattern Growth of Atomically Thin MoSe ₂ Films via a Surface-Mediated Liquid-Phase Promoter. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18056-18064.	4.0	8
29	Multiple Magnetic Phases in Van Der Waals Mnâ€Doped SnS ₂ Semiconductor. Advanced Functional Materials, 2021, 31, 2102560.	7.8	17
30	Subâ€bandgap activated charges transfer in a grapheneâ€MoS ₂ â€graphene heterostructure. Nano Select, 2021, 2, 2019-2028.	1.9	15
31	Enhanced magnetic moment with cobalt dopant in SnS2 semiconductor. APL Materials, 2021, 9, .	2.2	7
32	Infrared Proximity Sensors Based on Photoâ€Induced Tunneling in van der Waals Integration. Advanced Functional Materials, 2021, 31, 2100966.	7.8	12
33	Substitutional Vanadium Sulfide Nanodispersed in MoS ₂ Film for Ptâ€6calable Catalyst. Advanced Science, 2021, 8, e2003709.	5.6	19
34	Coexistence of Surface Superconducting and Three-Dimensional Topological Dirac States in Semimetal KZnBi. Physical Review X , 2021, 11, .	2.8	8
35	Deep Learningâ€Assisted Quantification of Atomic Dopants and Defects in 2D Materials. Advanced Science, 2021, 8, e2101099.	5.6	29
36	Unusually High Ion Conductivity in Large-Scale Patternable Two-Dimensional MoS ₂ Film. ACS Nano, 2021, 15, 12267-12275.	7.3	11

#	Article	IF	CITATIONS
37	Antiperovskite Gd ₃ SnC: Unusual Coexistence of Ferromagnetism and Heavy Fermions in Gd Lattice. Advanced Materials, 2021, 33, e2102958.	11.1	2
38	One-Step Synthesis of NbSe ₂ /Nb-Doped-WSe ₂ Metal/Doped-Semiconductor van der Waals Heterostructures for Doping Controlled Ohmic Contact. ACS Nano, 2021, 15, 13031-13040.	7.3	42
39	Simultaneous enhancement of specific capacitance and potential window of graphene-based electric double-layer capacitors using ferroelectric polymers. Journal of Power Sources, 2021, 507, 230268.	4.0	5
40	Enhancement in optically induced ultrafast THz response of MoSe2MoS2 heterobilayer. Optics Express, 2021, 29, 4181.	1.7	10
41	Gateâ€Tunable Magnetism via Resonant Seâ€Vacancy Levels in WSe 2. Advanced Science, 2021, , 2102911.	5 . 6	5
42	Spin-Selective Hole–Exciton Coupling in a V-Doped WSe ₂ Ferromagnetic Semiconductor at Room Temperature. ACS Nano, 2021, 15, 20267-20277.	7.3	13
43	Ultrashort Verticalâ€Channel van der Waals Semiconductor Transistors. Advanced Science, 2020, 7, 1902964.	5 . 6	24
44	Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity. Journal of Physical Chemistry Letters, 2020, 11, 99-107.	2.1	11
45	Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS Nano, 2020, 14, 919-926.	7.3	47
46	Tailoring Quantum Tunneling in a Vanadiumâ€Doped WSe ₂ /SnSe ₂ Heterostructure. Advanced Science, 2020, 7, 1902751.	5.6	63
47	Growth Mechanism of Alternating Defect Domains in Hexagonal WS ₂ via Inhomogeneous Wâ€Precursor Accumulation. Small, 2020, 16, e2003326.	5.2	18
48	Schottky-barrier quantum well in two-dimensional semiconductor nanotransistors. Materials Today Physics, 2020, 15, 100275.	2.9	4
49	Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor. Nano Letters, 2020, 20, 8446-8452.	4.5	44
50	Tuning the inhomogeneous charge transport in ZnO interfaces for ultrahigh on/off ratio top-gated field-effect-transistor arrays. Nano Research, 2020, 13, 3033-3040.	5.8	1
51	Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nature Nanotechnology, 2020, 15, 861-867.	15.6	79
52	A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures. Applied Sciences (Switzerland), 2020, 10, 7598.	1.3	8
53	Coulomb drag transistor using a graphene and MoS2 heterostructure. Communications Physics, 2020, 3, .	2.0	11
54	High-mobility junction field-effect transistor via graphene/MoS2 heterointerface. Scientific Reports, 2020, 10, 13101.	1.6	32

#	Article	IF	CITATIONS
55	Bandgap Renormalization in Monolayer MoS ₂ on CsPbBr ₃ Quantum Dots via Charge Transfer at Room Temperature. Advanced Materials Interfaces, 2020, 7, 2000835.	1.9	8
56	Dielectric Nanowire Hybrids for Plasmon-Enhanced Light–Matter Interaction in 2D Semiconductors. ACS Nano, 2020, 14, 11985-11994.	7.3	23
57	Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Materials and Applications, 2020, 4, .	3.9	528
58	Li Intercalation Effects on Interface Resistances of Highâ€Speed and Lowâ€Power WSe 2 Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 2003688.	7.8	9
59	Decelerated Hot Carrier Cooling in Graphene <i>via</i> Nondissipative Carrier Injection from MoS ₂ . ACS Nano, 2020, 14, 13905-13912.	7.3	22
60	Photoinduced Tuning of Schottky Barrier Height in Graphene/MoS ₂ Heterojunction for Ultrahigh Performance Short Channel Phototransistor. ACS Nano, 2020, 14, 7574-7580.	7.3	42
61	Gate modulation of the long-range magnetic order in a vanadium-doped WSe2 semiconductor. AIP Advances, 2020, 10, .	0.6	12
62	Evidence of shallow band gap in ultrathin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mathvariant="normal">e<mml:mn>2</mml:mn></mml:mathvariant="normal"></mml:msup></mml:mrow></mml:math> via infrared spectroscopy. Physical Review B, 2020, 101, .	mi>T <td>l:mj><mml:mo< td=""></mml:mo<></td>	l:mj> <mml:mo< td=""></mml:mo<>
63	Tailoring Domain Morphology in Monolayer NbSe ₂ and W _{<i>x</i>} Nb _{1–<i>x</i>} Se ₂ Heterostructure. ACS Nano, 2020, 14, 8784-8792.	7.3	30
64	An active carbon-nanotube polarizer-embedded electrode and liquid-crystal alignment. Nanoscale, 2020, 12, 17698-17702.	2.8	9
65	Ferromagnetic Order at Room Temperature in Monolayer WSe ₂ Semiconductor via Vanadium Dopant. Advanced Science, 2020, 7, 1903076.	5.6	148
66	Ferromagnetic quasi-atomic electrons in two-dimensional electride. Nature Communications, 2020, 11 , 1526 .	5.8	57
67	Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7861-7869.	5.2	60
68	Identifying Fibrillization State of A \hat{I}^2 Protein <i>>via</i> Near-Field THz Conductance Measurement. ACS Nano, 2020, 14, 6548-6558.	7.3	25
69	Carrier Multiplication in PbS Quantum Dots Anchored on a Au Tip using Conductive Atomic Force Microscopy. Advanced Materials, 2020, 32, e1908461.	11.1	7
70	Unveiling the Hot Carrier Distribution in Vertical Graphene/h-BN/Au van der Waals Heterostructures for High-Performance Photodetector. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10772-10780.	4.0	44
71	Temperature dependence of velocity saturation in a multilayer molybdenum disulfide transistor. Semiconductor Science and Technology, 2020, 35, 035030.	1.0	4
72	Transfer assembly for two-dimensional van der Waals heterostructures. 2D Materials, 2020, 7, 022005.	2.0	87

#	Article	IF	CITATIONS
73	Wafer-scale high-quality Ag thin film using a ZnO buffer layer for plasmonic applications. Applied Surface Science, 2020, 512, 145705.	3.1	5
74	How Clean Is Clean? Recipes for van der Waals Heterostructure Cleanliness Assessment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7701-7709.	4.0	20
7 5	Multi-layered carbon nanotube UV polariser for photo-alignment of liquid crystals. Liquid Crystals, 2020, 47, 1604-1611.	0.9	9
76	PbS Quantum Dots: Carrier Multiplication in PbS Quantum Dots Anchored on a Au Tip using Conductive Atomic Force Microscopy (Adv. Mater. 17/2020). Advanced Materials, 2020, 32, 2070130.	11.1	0
77	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1
78	Disentangling oxygen and water vapor effects on optoelectronic properties of monolayer tungsten disulfide. Nanoscale, 2020, 12, 8344-8354.	2.8	11
79	Quantitative insights into the growth mechanisms of nanopores in hexagonal boron nitride. Physical Review Materials, 2020, 4, .	0.9	8
80	Hot electron effects and electric field scaling near the metal-insulator transition in multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mathvariant="normal">S<mml:mn>2</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow>.</mml:math 	ni 1.1	0
81	Physical Review B, 2020, 101, . Hybrid catalyst with monoclinic MoTe2 and platinum for efficient hydrogen evolution. APL Materials, 2019, 7, .	2.2	24
82	Revealing antiferromagnetic transition of van der Waals MnPS3 via vertical tunneling electrical resistance measurement. APL Materials, 2019, 7, .	2.2	16
83	Fast-Charging High-Energy Battery–Supercapacitor Hybrid: Anodic Reduced Graphene Oxide–Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano, 2019, 13, 10776-10786.	7.3	104
84	Anisotropic mechanical properties and strengthening mechanism in superaligned carbon nanotubes-reinforced aluminum. Carbon, 2019, 153, 513-524.	5.4	12
85	Tunable Negative Differential Resistance in van der Waals Heterostructures at Room Temperature by Tailoring the Interface. ACS Nano, 2019, 13, 8193-8201.	7.3	69
86	Optical logic operation via plasmon-exciton interconversion in 2D semiconductors. Scientific Reports, 2019, 9, 9164.	1.6	12
87	Edge Contact for Carrier Injection and Transport in MoS ₂ Field-Effect Transistors. ACS Nano, 2019, 13, 13169-13175.	7.3	47
88	Anomalous Conductance near Percolative Metal–Insulator Transition in Monolayer MoS2 at Low Voltage Regime. ACS Nano, 2019, 13, 6631-6637.	7.3	11
89	Ultrahigh Gauge Factor in Graphene/MoS ₂ Heterojunction Field Effect Transistor with Variable Schottky Barrier. ACS Nano, 2019, 13, 8392-8400.	7.3	54
90	Gate tunable optical absorption and band structure of twisted bilayer graphene. Physical Review B, 2019, 99, .	1.1	36

#	Article	IF	Citations
91	Efficient Gate Modulation in a Screening-Engineered MoS ₂ /Single-Walled Carbon Nanotube Network Heterojunction Vertical Field-Effect Transistor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25516-25523.	4.0	20
92	Single-Crystalline Monolayer Graphene Wafer on Dielectric Substrate of SiON without Metal Catalysts. ACS Nano, 2019, 13, 6662-6669.	7.3	15
93	Semimetallic Graphene for Infrared Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19565-19571.	4.0	12
94	Inverse Stranski–Krastanov Growth in Single-Crystalline Sputtered Cu Thin Films for Wafer-Scale Device Applications. ACS Applied Nano Materials, 2019, 2, 3300-3306.	2.4	3
95	Roomâ€Temperature Mesoscopic Fluctuations and Coulomb Drag in Multilayer WSe ₂ . Advanced Materials, 2019, 31, e1900154.	11.1	12
96	Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nature Communications, 2019, 10, 5488.	5.8	41
97	Long-range ferromagnetic ordering in vanadium-doped WSe2 semiconductor. Applied Physics Letters, 2019, 115, .	1.5	31
98	Twoâ€Terminal Multibit Optical Memory via van der Waals Heterostructure. Advanced Materials, 2019, 31, e1807075.	11.1	168
99	Minimizing Trap Charge Density towards an Ideal Diode in Graphene–Silicon Schottky Solar Cell. ACS Applied Materials & Diversaces, 2019, 11, 880-888.	4.0	15
100	Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1579-1586.	4.0	17
101	Coherent Thermoelectric Power from Graphene Quantum Dots. Nano Letters, 2019, 19, 61-68.	4.5	25
102	Role of Hole Trap Sites in MoS ₂ for Inconsistency in Optical and Electrical Phenomena. ACS Applied Materials & Description (2018), 10, 10580-10586.	4.0	37
103	Electrically Tunable Slow Light Using Graphene Metamaterials. ACS Photonics, 2018, 5, 1800-1807.	3.2	187
104	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	7.3	0
105	Intragranular Dispersion of Carbon Nanotubes Comprehensively Improves Aluminum Alloys. Advanced Science, 2018, 5, 1800115.	5.6	20
106	Large local lattice expansion in graphene adlayers grown on copper. Nature Materials, 2018, 17, 450-455.	13.3	13
107	Unsaturated Drift Velocity of Monolayer Graphene. Nano Letters, 2018, 18, 1575-1581.	4.5	13
108	Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures. Advanced Materials, 2018, 30, 1704435.	11.1	51

#	Article	IF	CITATIONS
109	Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump–Terahertz Probe Spectroscopy. ACS Nano, 2018, 12, 1785-1792.	7.3	23
110	High energy density and enhanced stability of asymmetric supercapacitors with mesoporous MnO2@CNT and nanodot MoO3@CNT free-standing films. Energy Storage Materials, 2018, 12, 223-231.	9.5	149
111	Synthesis of high quality graphene on capped $(1\hat{a}\in\%1\hat{a}\in\%1)$ Cu thin films obtained by high temperature secondary grain growth on $\langle i\rangle c\langle i\rangle$ -plane sapphire substrates. 2D Materials, 2018, 5, 035008.	2.0	10
112	Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS ₂ field-effect transistors. 2D Materials, 2018, 5, 031001.	2.0	104
113	CMOS-compatible batch processing of monolayer MoS2MOSFETs. Journal Physics D: Applied Physics, 2018, 51, 15LT02.	1.3	13
114	Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362, 817-821.	6.0	336
115	Anomalous K-Point Phonons in Noble Metal/Graphene Heterostructure Activated by Localized Surface Plasmon Resonance. ACS Nano, 2018, 12, 12733-12740.	7.3	10
116	Enhanced Light–Matter Interactions in Selfâ€Assembled Plasmonic Nanoparticles on 2D Semiconductors. Small, 2018, 14, e1802949.	5.2	18
117	Investigation of Zirconium Effect on the Corrosion Resistance of Aluminum Alloy Using Electrochemical Methods and Numerical Simulation in an Acidified Synthetic Sea Salt Solution. Materials, 2018, 11, 1982.	1.3	15
118	Gas adsorbates are Coulomb scatterers, rather than neutral ones, in a monolayer MoS ₂ field effect transistor. Nanoscale, 2018, 10, 10856-10862.	2.8	7
119	Direct growth of doping controlled monolayer WSe ₂ by selenium-phosphorus substitution. Nanoscale, 2018, 10, 11397-11402.	2.8	34
120	Superconductivity in Te-deficient polymorphic MoTe $<$ sub> $2\hat{a}^{*}$ $<$ i> $>$ x $>$ and its derivatives: rich structural and electronic phase transitions. 2D Materials, 2018, 5, 031014.	2.0	5
121	van der Waals Metallic Transition Metal Dichalcogenides. Chemical Reviews, 2018, 118, 6297-6336.	23.0	252
122	Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor. ACS Nano, 2018, 12, 8494-8505.	7.3	164
123	Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chemical Society Reviews, 2018, 47, 6342-6369.	18.7	114
124	Plasma-Induced Phase Transformation of SnS2 to SnS. Scientific Reports, 2018, 8, 10284.	1.6	35
125	Very high open-circuit voltage in dual-gate graphene/silicon heterojunction solar cells. Nano Energy, 2018, 53, 398-404.	8.2	11
126	Unveiling Defect-Related Raman Mode of Monolayer WS ₂ via Tip-Enhanced Resonance Raman Scattering. ACS Nano, 2018, 12, 9982-9990.	7.3	78

#	Article	IF	Citations
127	Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2. Nature Communications, 2018, 9, 2052.	5.8	27
128	Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nature Communications, 2017, 8, 14116.	5.8	69
129	Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017, 20, 116-130.	8.3	1,852
130	Thickness-dependent in-plane thermal conductivity of suspended MoS ₂ grown by chemical vapor deposition. Nanoscale, 2017, 9, 2541-2547.	2.8	86
131	Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process. Scientific Reports, 2017, 7, 40810.	1.6	23
132	Understanding Coulomb Scattering Mechanism in Monolayer MoS ₂ Channel in the Presence of <i>h</i> -BN Buffer Layer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5006-5013.	4.0	37
133	Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS ₂ Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11240-11246.	4.0	57
134	Graphene: Probing Bilayer Grain Boundaries in Largeâ€Area Graphene with Tipâ€Enhanced Raman Spectroscopy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	11,1	1
135	Heterogeneous Defect Domains in Singleâ€Crystalline Hexagonal WS ₂ . Advanced Materials, 2017, 29, 1605043.	11.1	135
136	Integrated Freestanding Twoâ€dimensional Transition Metal Dichalcogenides. Advanced Materials, 2017, 29, 1700308.	11,1	33
137	Active hydrogen evolution through lattice distortion in metallic MoTe ₂ . 2D Materials, 2017, 4, 025061.	2.0	103
138	Selective control of electron and hole tunneling in 2D assembly. Science Advances, 2017, 3, e1602726.	4.7	25
139	Long-Range Lattice Engineering of MoTe ₂ by a 2D Electride. Nano Letters, 2017, 17, 3363-3368.	4.5	72
140	Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride. 2D Materials, 2017, 4, 021030.	2.0	42
141	Carbonâ€Nanotubeâ€Templated, Sputterâ€Deposited, Flexible Superconducting NbN Nanowire Yarns. Advanced Functional Materials, 2017, 27, 1701108.	7.8	12
142	Charge Transport in MoS ₂ /WSe ₂ van der Waals Heterostructure with Tunable Inversion Layer. ACS Nano, 2017, 11, 3832-3840.	7.3	175
143	Strong Localization of Anionic Electrons at Interlayer for Electrical and Magnetic Anisotropy in Two-Dimensional Y ₂ C Electride. Journal of the American Chemical Society, 2017, 139, 615-618.	6.6	71
144	Photocurrent Switching of Monolayer MoS ₂ Using a Metal–Insulator Transition. Nano Letters, 2017, 17, 673-678.	4.5	31

#	Article	IF	CITATIONS
145	Probing Bilayer Grain Boundaries in Largeâ€Area Graphene with Tipâ€Enhanced Raman Spectroscopy. Advanced Materials, 2017, 29, 1603601.	11.1	37
146	Nanoreactor of Nickelâ€Containing Carbon–Shells as Oxygen Reduction Catalyst. Advanced Materials, 2017, 29, 1605083.	11.1	64
147	Graphene Substrate for van der Waals Epitaxy of Layerâ€Structured Bismuth Antimony Telluride Thermoelectric Film. Advanced Materials, 2017, 29, 1604899.	11.1	33
148	Tuning Carrier Tunneling in van der Waals Heterostructures for Ultrahigh Detectivity. Nano Letters, 2017, 17, 453-459.	4.5	178
149	A Highâ€On/Offâ€Ratio Floatingâ€Gate Memristor Array on a Flexible Substrate via CVDâ€Grown Largeâ€Area 2D Layer Stacking. Advanced Materials, 2017, 29, 1703363.	11.1	116
150	Ultrastretchable Analog/Digital Signal Transmission Line with Carbon Nanotube Sheets. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26286-26292.	4.0	13
151	Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Heteroâ€Bilayers. Advanced Materials, 2017, 29, 1701512.	11.1	51
152	Structural and quantum-state phase transitions in van der Waals layered materials. Nature Physics, 2017, 13, 931-937.	6.5	280
153	Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy. Nature Communications, 2017, 8, 2121.	5.8	56
154	van der Waals Layered Materials: Opportunities and Challenges. ACS Nano, 2017, 11, 11803-11830.	7.3	394
155	Impact of Carboxyl Groups in Graphene Oxide on Chemoselective Alcohol Oxidation with Ultra-Low Carbocatalyst Loading. Scientific Reports, 2017, 7, 3146.	1.6	22
156	Low-Temperature Ohmic Contact to Monolayer MoS ₂ by van der Waals Bonded Co/ <i>h</i> hhBN Electrodes. Nano Letters, 2017, 17, 4781-4786.	4.5	233
157	Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology, 2017, 28, 36LT01.	1.3	56
158	Chain Vacancies in 2D Crystals. Small, 2017, 13, 1601930.	5.2	18
159	Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nature Communications, 2017, 8, 2163.	5.8	87
160	Memristors: A Highâ€On/Offâ€Ratio Floatingâ€Gate Memristor Array on a Flexible Substrate via CVDâ€Grown Largeâ€Area 2D Layer Stacking (Adv. Mater. 44/2017). Advanced Materials, 2017, 29, .	11.1	1
161	Electrical Transport Properties of Polymorphic MoS ₂ . ACS Nano, 2016, 10, 7500-7506.	7. 3	82
162	Mobility Enhancement of Transparent IZO/GrRM Heterostructure via Grapheneâ€Randomâ€Mesh Carrier Pathways. Advanced Electronic Materials, 2016, 2, 1500382.	2.6	3

#	Article	IF	Citations
163	Strong Coulomb scattering effects on low frequency noise in monolayer WS2 field-effect transistors. Applied Physics Letters, 2016, 109, .	1.5	18
164	A systematic study of the synthesis of monolayer tungsten diselenide films on gold foil. Current Applied Physics, 2016, 16, 1216-1222.	1.1	16
165	Ton-scale metal–carbon nanotube composite: The mechanism of strengthening while retaining tensile ductility. Extreme Mechanics Letters, 2016, 8, 245-250.	2.0	30
166	Large Work Function Modulation of Monolayer MoS ₂ by Ambient Gases. ACS Nano, 2016, 10, 6100-6107.	7.3	188
167	Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition. Current Applied Physics, 2016, 16, 1229-1235.	1.1	18
168	Photochemical Reaction in Monolayer MoS ₂ <i>via</i> Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. ACS Nano, 2016, 10, 5230-5236.	7.3	101
169	Indirect Bandgap Puddles in Monolayer MoS ₂ by Substrateâ€Induced Local Strain. Advanced Materials, 2016, 28, 9378-9384.	11.1	120
170	Absorption dichroism of monolayer 1T′-MoTe ₂ in visible range. 2D Materials, 2016, 3, 031010.	2.0	32
171	Stranski–Krastanov and Volmer–Weber CVD Growth Regimes To Control the Stacking Order in Bilayer Graphene. Nano Letters, 2016, 16, 6403-6410.	4.5	95
172	Optical Gain in MoS ₂ <i>via</i> Coupling with Nanostructured Substrate: Fabry–Perot Interference and Plasmonic Excitation. ACS Nano, 2016, 10, 8192-8198.	7.3	69
173	Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nature Communications, 2016, 7, 13663.	5.8	48
174	Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS ₂ / <i>h</i> hHeterostructure. Nano Letters, 2016, 16, 6383-6389.	4.5	78
175	Identifying multiexcitons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> monolayers at room temperature. Physical Review B. 2016. 93	i 1.1	74
176	Vertically Conductive MoS ₂ Spiral Pyramid. Advanced Materials, 2016, 28, 7723-7728.	11.1	63
177	Waferâ€Scale Singleâ€Crystalline ABâ€Stacked Bilayer Graphene. Advanced Materials, 2016, 28, 8177-8183.	11.1	79
178	What is unique in 2D-layered materials?. , 2016, , .		0
179	Determining the Fermi level by absorption quenching of monolayer graphene by charge transfer doping. Nanoscale, 2016, 8, 18710-18717.	2.8	16
180	Hyperdislocations in van der Waals Layered Materials. Nano Letters, 2016, 16, 7807-7813.	4.5	8

#	Article	IF	CITATIONS
181	Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nature Communications, 2016, 7, 13278.	5.8	120
182	Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nature Communications, 2016, 7, 12725.	5.8	271
183	Sorting centimetre-long single-walled carbon nanotubes. Scientific Reports, 2016, 6, 30836.	1.6	3
184	In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures. Current Applied Physics, 2016, 16, 1175-1191.	1.1	42
185	Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nature Communications, 2016, 7, 10426.	5.8	172
186	Oxidation Effect in Octahedral Hafnium Disulfide Thin Film. ACS Nano, 2016, 10, 1309-1316.	7.3	97
187	Biexciton Emission from Edges and Grain Boundaries of Triangular WS ₂ Monolayers. ACS Nano, 2016, 10, 2399-2405.	7.3	220
188	Visualizing Point Defects in Transition-Metal Dichalcogenides Using Optical Microscopy. ACS Nano, 2016, 10, 770-777.	7.3	58
189	Metal–Insulator–Semiconductor Diode Consisting of Two-Dimensional Nanomaterials. Nano Letters, 2016, 16, 1858-1862.	4.5	74
190	Voltage Scaling of Graphene Device on SrTiO ₃ Epitaxial Thin Film. Nano Letters, 2016, 16, 1754-1759.	4.5	15
191	Dispersion of carbon nanotubes in aluminum improves radiation resistance. Nano Energy, 2016, 22, 319-327.	8.2	55
192	Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation. Accounts of Chemical Research, 2016, 49, 390-399.	7.6	30
193	Directional dependent piezoelectric effect in CVD grown monolayer MoS 2 for flexible piezoelectric nanogenerators. Nano Energy, 2016, 22, 483-489.	8.2	197
194	Room Temperature Semiconductor–Metal Transition of MoTe ₂ Thin Films Engineered by Strain. Nano Letters, 2016, 16, 188-193.	4.5	415
195	Connecting wire-based solar cells without any transparent conducting electrode. CrystEngComm, 2016, 18, 207-212.	1.3	1
196	Selective Amplification of the Primary Exciton in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mo</mml:mi><mml:msub><mml:mi math="">math>SS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Monolayer.	2.9	54
197	Physical Review Letters, 2015, 115, 226801. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains. Scientific Reports, 2015, 5, 16159.	1.6	72
198	Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation. Scientific Reports, 2015, 5, 15380.	1.6	6

#	Article	IF	CITATIONS
199	Carbonâ€Based Materials for Lithiumâ€Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. ChemSusChem, 2015, 8, 2284-2311.	3.6	259
200	A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe ₂ . Advanced Materials, 2015, 27, 5534-5540.	11.1	196
201	Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films. ACS Nano, 2015, 9, 6548-6554.	7.3	225
202	Efficient Exciton–Plasmon Conversion in Ag Nanowire/Monolayer MoS ₂ Hybrids: Direct Imaging and Quantitative Estimation of Plasmon Coupling and Propagation. Advanced Optical Materials, 2015, 3, 943-947.	3.6	48
203	MoS <inf>2</inf> monolayers for propagating plasmon emitter and detector in long range. , 2015, , .		0
204	Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries. Scientific Reports, 2015, 5, 7659.	1.6	85
205	Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors. ACS Nano, 2015, 9, 2018-2027.	7.3	277
206	Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nature Communications, 2015, 6, 6128.	5.8	259
207	Seed Growth of Tungsten Diselenide Nanotubes from Tungsten Oxides. Small, 2015, 11, 2192-2199.	5.2	20
208	Leaf Veinâ€Inspired Nanochanneled Graphene Film for Highly Efficient Microâ€Supercapacitors. Advanced Energy Materials, 2015, 5, 1500003.	10.2	69
209	Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: Augmented light output of GaN UV-LED. Scientific Reports, 2015, 5, 7778.	1.6	27
210	Phase patterning for ohmic homojunction contact in MoTe ₂ . Science, 2015, 349, 625-628.	6.0	918
211	High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nature Communications, 2015, 6, 7809.	5.8	223
212	Characterization of the structural defects in CVD-grown monolayered MoS ₂ using near-field photoluminescence imaging. Nanoscale, 2015, 7, 11909-11914.	2.8	92
213	Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils. ACS Nano, 2015, 9, 5510-5519.	7.3	166
214	Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348, 109-114.	6.0	1,552
215	Bandgap opening in few-layered monoclinic MoTe2. Nature Physics, 2015, 11, 482-486.	6.5	800
216	Towards Wafer-Scale Monocrystalline Graphene Growth and Characterization. Small, 2015, 11, 3512-3528.	5.2	54

#	Article	IF	CITATIONS
217	Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes. Scientific Reports, 2015, 5, 7747.	1.6	62
218	Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nature Communications, 2015, 6, 8662.	5.8	403
219	Electrical and Optical Characterization of MoS ₂ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano, 2015, 9, 8044-8053.	7.3	185
220	Semiconductor–Insulator–Semiconductor Diode Consisting of Monolayer MoS ₂ , h-BN, and GaN Heterostructure. ACS Nano, 2015, 9, 10032-10038.	7.3	88
221	Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio. ACS Nano, 2015, 9, 9034-9042.	7.3	56
222	Seamless Stitching of Graphene Domains on Polished Copper (111) Foil. Advanced Materials, 2015, 27, 1376-1382.	11.1	314
223	Direct growth of etch pit-free GaN crystals on few-layer graphene. RSC Advances, 2015, 5, 1343-1349.	1.7	46
224	A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Research, 2015, 8, 1348-1356.	5.8	116
225	Passivation effect on gate-bias stress instability of carbon nanotube thin film transistors. Applied Physics Letters, 2014, 104, .	1.5	20
226	Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 11401-11408.	7.3	113
227	Confocal absorption spectral imaging of MoS ₂ : optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS ₂ . Nanoscale, 2014, 6, 13028-13035.	2.8	319
228	Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition. Nanoscale, 2014, 6, 12943-12951.	2.8	42
229	Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters. Physical Review E, 2014, 90, 012508.	0.8	5
230	Large-Area Monolayer Hexagonal Boron Nitride on Pt Foil. ACS Nano, 2014, 8, 8520-8528.	7.3	200
231	A new horizon for hexagonal boron nitride film. Journal of the Korean Physical Society, 2014, 64, 1605-1616.	0.3	28
232	Barrier Height at the Graphene and Carbon Nanotube Junction. IEEE Transactions on Electron Devices, 2014, 61, 2203-2207.	1.6	13
233	Silicon nanowires for Li-based battery anodes: a review. Journal of Materials Chemistry A, 2013, 1, 9566.	5.2	311
234	Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation. Scientific Reports, 2013, 3, 3206.	1.6	14

#	Article	IF	CITATIONS
235	Effects of carbon nanotubes on electro-optic characteristics in vertically aligned liquid crystal display. Liquid Crystals, 2013, 40, 1202-1208.	0.9	20
236	Asymmetric Supercapacitors Based on Graphene/MnO ₂ Nanospheres and Graphene/MoO ₃ Nanosheets with High Energy Density. Advanced Functional Materials, 2013, 23, 5074-5083.	7.8	638
237	Quantum Dot–Carbon Nanotube Hybrid Phototransistor with an Enhanced Optical Stark Effect. Advanced Functional Materials, 2013, 23, 3653-3660.	7.8	21
238	Transferred wrinkled Al2O3 for highly stretchableÂand transparent graphene–carbon nanotube transistors. Nature Materials, 2013, 12, 403-409.	13.3	295
239	Nondestructive Characterization of Graphene Defects. Advanced Functional Materials, 2013, 23, 5183-5189.	7.8	44
240	Positive gate bias stress instability of carbon nanotube thin film transistors. Applied Physics Letters, 2012, 101, 053504.	1.5	17
241	Solution-Processed Graphite Membrane from Reassembled Graphene Oxide. Chemistry of Materials, 2012, 24, 594-599.	3.2	85
242	Probing graphene grain boundaries with optical microscopy. Nature, 2012, 490, 235-239.	13.7	352
243	Ultraviolet tipâ€enhanced nanoscale Raman imaging. Journal of Raman Spectroscopy, 2012, 43, 1931-1934.	1.2	9
244	Origin of unipolarity in carbon nanotube field effect transistors. Journal of Materials Chemistry, 2012, 22, 1994-1997.	6.7	14
245	Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 24618.	6.7	116
246	Band-gap engineering in chemically conjugated bilayer graphene: <i>Ab initio</i> calculations. Physical Review B, 2012, 85, .	1.1	29
247	Heat Dissipation of Transparent Graphene Defoggers. Advanced Functional Materials, 2012, 22, 4819-4826.	7.8	238
248	Carbonâ€Based Electrochemical Capacitors. ChemSusChem, 2012, 5, 480-499.	3.6	491
249	Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 4502.	6.7	54
250	Botryoidal growth of crystalline ZnO nanoparticles on a forest of single-walled carbon nanotubes by atomic layer deposition. CrystEngComm, 2011, 13, 3451.	1.3	19
251	Laser Thinning for Monolayer Graphene Formation: Heat Sink and Interference Effect. ACS Nano, 2011, 5, 263-268.	7.3	94
252	POLY(ETHYLENE CO-VINYL ACETATE)-ASSISTED ONE-STEP TRANSFER OF ULTRA-LARGE GRAPHENE. Nano, 2011, 06, 59-65.	0.5	35

#	Article	IF	Citations
253	High Pseudocapacitance from Ultrathin V ₂ O ₅ Films Electrodeposited on Selfâ€Standing Carbonâ€Nanofiber Paper. Advanced Functional Materials, 2011, 21, 2541-2547.	7.8	205
254	Facile Physical Route to Highly Crystalline Graphene. Advanced Functional Materials, 2011, 21, 3496-3501.	7.8	97
255	Graphene Versus Carbon Nanotubes in Electronic Devices. Advanced Functional Materials, 2011, 21, 3806-3826.	7.8	232
256	Graphene vs Carbon Nanotubes in Electronic Devices: Graphene Versus Carbon Nanotubes in Electronic Devices (Adv. Funct. Mater. 20/2011). Advanced Functional Materials, 2011, 21, 3798-3798.	7.8	2
257	Optical Arrays: Graphene/Carbon Nanotube Hybrid-Based Transparent 2D Optical Array (Adv. Mater.) Tj ETQq1 1	0.784314	rgBT Overlo
258	Highly Interconnected Si Nanowires for Improved Stability Liâ€lon Battery Anodes. Advanced Energy Materials, 2011, 1, 1154-1161.	10.2	169
259	Low-temperature graphene growth using epochal catalyst of PdCo alloy. Applied Physics Letters, 2011, 99, .	1.5	9
260	CRITERIA FOR PRODUCING YARNS FROM VERTICALLY ALIGNED CARBON NANOTUBES. Nano, 2010, 05, 31-38.	0.5	14
261	A tunable carbon nanotube polarizer. Nanotechnology, 2010, 21, 405202.	1.3	21
262	Hygroscopic Effects on AuCl ₃ -Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 11618-11622.	1.5	33
263	Anomalous Schottky Barriers and Contact Band-to-Band Tunneling in Carbon Nanotube Transistors. ACS Nano, 2010, 4, 3103-3108.	7.3	21
264	Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano, 2010, 4, 4595-4600.	7.3	293
265	Doping strategy of carbon nanotubes with redox chemistry. New Journal of Chemistry, 2010, 34, 2183.	1.4	63
266	Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator. Journal of the American Chemical Society, 2010, 132, 15603-15609.	6.6	247
267	Diffusion-limited reduction of organometallic compound on carbon nanofiber mat for catalytic applications. Journal of Materials Chemistry, 2010, 20, 5468.	6.7	2
268	Carbon nanotube transistor: Doping and ambipolarity. , 2010, , .		1
269	Effects of Carbon Nanotube Length on Electro-Optical Characteristics in Liquid Crystal Cell Driven by Fringe Field Switching. Molecular Crystals and Liquid Crystals, 2010, 530, 1/[157]-6/[162].	0.4	O
270	Fabrication and Characterization of the \${m MgB}_{2}\$ Bulk Superconductors Doped by Carbon Nanotubes. IEEE Transactions on Applied Superconductivity, 2009, 19, 2767-2770.	1.1	4

#	Article	IF	CITATIONS
271	Carbon Nanotube Effects on Electro-Optic Characteristics of Twisted Nematic Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 2009, 498, 74-82.	0.4	11
272	Analysis of hopping conduction in semiconducting and metallic carbon nanotube devices. Journal of Applied Physics, 2009, 105, .	1.1	15
273	Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 2009, 19, 1987-1992.	7.8	2,059
274	Synthesis of Largeâ€Area Graphene Layers on Polyâ€Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials, 2009, 21, 2328-2333.	11.1	814
275	Nonvolatile Memory: Majority Carrier Type Conversion with Floating Gates in Carbon Nanotube Transistors (Adv. Mater. 47/2009). Advanced Materials, 2009, 21, .	11.1	1
276	Control of pâ€doping on singleâ€walled carbon nanotubes with nitronium hexafluoroantimonate in liquid phase. Physica Status Solidi (B): Basic Research, 2009, 246, 2419-2422.	0.7	8
277	Front Cover (Phys. Status Solidi B 11â€12/2009). Physica Status Solidi (B): Basic Research, 2009, 246, .	0.7	0
278	Direct printing of aligned carbon nanotube patterns for high-performance thin film devices. Applied Physics Letters, 2009, 94, 053109.	1.5	26
279	Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability. Applied Physics Letters, 2009, 95, .	1.5	184
280	ATOMIC HYDROGEN-DRIVEN SIZE CONTROL OF CATALYTIC NANOPARTICLES FOR SINGLE-WALLED CARBON NANOTUBE GROWTH. Nano, 2008, 03, 145-153.	0.5	13
281	PURITY MEASUREMENT OF SINGLE-WALLED CARBON NANOTUBES BY UV-VIS-NIR ABSORPTION SPECTROSCOPY AND THERMOGRAVIMETRIC ANALYSIS. Nano, 2008, 03, 101-108.	0.5	28
282	Origin of enhanced field emission characteristics postplasma treatment of multiwalled carbon nanotube array. Applied Physics Letters, 2008, 93, 063101.	1.5	13
283	Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor. Applied Physics Letters, 2008, 92, .	1.5	22
284	Characterization of fluorine-doped thin-multiwalled carbon nanotubes by terahertz spectroscopy., 2007,,.		0
285	Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes. Applied Physics Letters, 2007, 90, 051914.	1.5	53
286	Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2007, 111, 1620-1624.	1.5	139
287	Schottky barrier engineering in carbon nanotube with various metal electrodes. , 2007, , .		3
288	Dependence of Raman spectra <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>G</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math> band intensity on metallicity of single-wall carbon nanotubes. Physical Review B, 2007, 76, .	1.1	67

#	Article	IF	Citations
289	Complete Removal of the Substrate Effects in Third-Harmonic Generation from Single-Walled Carbon Nanotubes. , 2007, , .		O
290	Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes. Physical Review B, 2007, 75, .	1.1	52
291	Chiralityâ€specific transport phenomena of isolated singleâ€walled carbon nanotube. Physica Status Solidi (B): Basic Research, 2007, 244, 4204-4211.	0.7	2
292	A diameter-selective chiral separation of single-wall carbon nanotubes using nitronium lons. Journal of Electronic Materials, 2006, 35, 235-242.	1.0	18
293	Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Physical Review B, 2006, 73, .	1.1	74
294	FABRICATION OF GAS SENSOR USING SINGLE-WALLED CARBON NANOTUBES DISPERSED IN DICHLOROETHANE. Nano, 2006, 01, 235-241.	0.5	6
295	Frequency-dependent optical constants and conductivities of hydrogen-functionalized single-walled carbon nanotubes. Applied Physics Letters, 2005, 87, 041908.	1.5	28
296	Characterization of hydrogen-functionalized carbon nanotubes using Terahertz spectroscopy. , 2005, , .		0
297	Electrical and Optical Properties of Carbon Nanotubes Characterized by Terahertz Electromagnetic Pulses., 2005,,.		0
298	Formation of Densely Packed Single-Walled Carbon Nanotube Assembly. Chemistry of Materials, 2005, 17, 6422-6429.	3.2	24
299	Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region. Journal of Applied Physics, 2004, 95, 5736-5740.	1.1	134
300	Fabrication of Supercapacitor Electrodes Using Fluorinated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 8812-8815.	1.2	86
301	In situmanipulation and characterizations using nanomanipulators inside a field emission-scanning electron microscope. Review of Scientific Instruments, 2003, 74, 4021-4025.	0.6	34
302	Electronic properties of K-doped single-wall carbon nanotube bundles. Physical Review B, 2002, 65, .	1.1	48
303	Secondary electron emission from magnesium oxide on multiwalled carbon nanotubes. Applied Physics Letters, 2002, 81, 1098-1100.	1.5	40
304	Dimer-Exchange Mechanism in Surfactant-Mediated Si/Ge Epitaxial Growth. Journal of Physical Chemistry B, 2002, 106, 891-894.	1.2	3
305	Terahertz conductivity of anisotropic single walled carbon nanotube films. Applied Physics Letters, 2002, 80, 3403-3405.	1.5	142
306	Adsorption of NH3 and NO2 molecules on carbon nanotubes. Applied Physics Letters, 2001, 79, 3863-3865.	1.5	388

YOUNG HEE LEE

#	ARTICLE	IF	CITATIONS
307	Supercapacitors using singlewalled carbon nanotube electrodes. AIP Conference Proceedings, 2001, , .	0.3	14
308	Transport phenomena in an anisotropically aligned single-wall carbon nanotube film. Physical Review B, 2001, 64, .	1.1	54
309	Preparation of mechanically aligned carbon nanotube films and their anisotropic transport phenomena. AIP Conference Proceedings, 2001, , .	0.3	O
310	Field Emission Properties of Vertically Aligned Carbon Nanotubes Driven by Polar and Non-Polar Gas Adsorption. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	2
311	Electrochemical hydrogen storage in singlewalled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.3	O
312	Effect of electric field on the electronic structures of carbon nanotubes. Applied Physics Letters, 2001, 79, 1187-1189.	1.5	56
313	Electron-driven engineering of graphene. Journal of Materials Research, 0, , 1-7.	1.2	1