Ryan N Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150602/publications.pdf

Version: 2024-02-01

20 papers

1,844 citations

16 h-index 794594 19 g-index

22 all docs 22 docs citations

times ranked

22

1899 citing authors

#	Article	IF	CITATIONS
1	Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature Reviews Microbiology, 2014, 12, 479-492.	28.6	600
2	Crystal structure of the CRISPR RNA–guided surveillance complex from <i>Escherichia coli</i> li>. Science, 2014, 345, 1473-1479.	12.6	226
3	Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell, 2017, 169, 47-57.e11.	28.9	191
4	Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition. PLoS Genetics, 2013, 9, e1003742.	3.5	187
5	The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO Journal, 2010, 29, 2205-2216.	7.8	106
6	A Conserved Structural Chassis for Mounting Versatile CRISPR RNA-Guided Immune Responses. Molecular Cell, 2015, 58, 722-728.	9.7	78
7	Ski2-like RNA helicase structures. RNA Biology, 2013, 10, 33-43.	3.1	75
8	Fitting CRISPR-associated Cas3 into the Helicase Family Tree. Current Opinion in Structural Biology, 2014, 24, 106-114.	5.7	59
9	Mechanism of CRISPR-RNA guided recognition of DNA targets in <i>Escherichia coli</i> Research, 2015, 43, 8381-8391.	14.5	45
10	Conformational regulation of CRISPR-associated nucleases. Current Opinion in Microbiology, 2017, 37, 110-119.	5.1	43
11	The CRISPR RNA-guided surveillance complex in <i>Escherichia coli</i> accommodates extended RNA spacers. Nucleic Acids Research, 2016, 44, gkw421.	14.5	42
12	A Type IV-A CRISPR-Cas System in <i>Pseudomonas aeruginosa</i> Mediates RNA-Guided Plasmid Interference <i>In Vivo</i> . CRISPR Journal, 2019, 2, 434-440.	2.9	39
13	The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding. Nucleic Acids Research, 2014, 42, 13861-13872.	14.5	31
14	Conformational Dynamics of DNA Binding and Cas3 Recruitment by the CRISPR RNA-Guided Cascade Complex. ACS Chemical Biology, 2018, 13, 481-490.	3.4	26
15	Structure of a type IV CRISPR-Cas ribonucleoprotein complex. IScience, 2021, 24, 102201.	4.1	23
16	X-ray structure determination using low-resolution electron microscopy maps for molecular replacement. Nature Protocols, 2015, 10, 1275-1284.	12.0	22
17	Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease. RNA Biology, 2019, 16, 1438-1447.	3.1	19
18	Positioning Diverse Type IV Structures and Functions Within Class 1 CRISPR-Cas Systems. Frontiers in Microbiology, 2021, 12, 671522.	3.5	18

#	Article	IF	CITATIONS
19	Role of nucleotide identity in effective CRISPR target escape mutations. Nucleic Acids Research, 2018, 46, 10395-10404.	14.5	10
20	Using Cryoem to Understand How Phages Evade Bacterial CRISPR Defense System. Biophysical Journal, 2017, 112, 334a-335a.	0.5	0