Jin Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11504838/publications.pdf

Version: 2024-02-01

		623734	713466
32	508	14	21
papers	citations	h-index	g-index
20	22	20	500
32	32	32	583
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration. Kidney International, 2022, 101, 541-550.	5.2	8
2	Reducing ischemic kidney injury through application of a synchronization modulation electric field to maintain Na ⁺ /K ⁺ -ATPase functions. Science Translational Medicine, 2022, 14, eabj4906.	12.4	13
3	Macula Densa Intracellular Alkalinization Activates NOS1β but Suppresses NOS1α during Tubuloglomerular Feedback. FASEB Journal, 2022, 36, .	0.5	O
4	New Insights into Juxtaglomerular Cells via Singleâ€Cell RNAâ€Sequencing. FASEB Journal, 2022, 36, .	0.5	0
5	Macula Densa NOS1Î ² Modulates Renal Hemodynamics and Blood Pressure during Pregnancy: Role in Gestational Hypertension. Journal of the American Society of Nephrology: JASN, 2021, 32, 2485-2500.	6.1	8
6	Knockout of Macula Densa Neuronal Nitric Oxide Synthase Increases Blood Pressure in db/db Mice. Hypertension, 2021, 78, 1760-1770.	2.7	6
7	Aging Impairs Renal Autoregulation in Mice. Hypertension, 2020, 75, 405-412.	2.7	14
8	New Mechanism for the Sex Differences in Salt-Sensitive Hypertension. Hypertension, 2020, 75, 449-457.	2.7	21
9	A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. American Journal of Physiology - Renal Physiology, 2020, 319, F908-F919.	2.7	6
10	A two-stage bilateral ischemia-reperfusion injury-induced AKI to CKD transition model in mice. American Journal of Physiology - Renal Physiology, 2020, 319, F304-F311.	2.7	12
11	High-Protein Diet–Induced Glomerular Hyperfiltration Is Dependent on Neuronal Nitric Oxide Synthase β in the Macula Densa via Tubuloglomerular Feedback Response. Hypertension, 2019, 74, 864-871.	2.7	24
12	A mouse model of renal ischemia-reperfusion injury solely induced by cold ischemia. American Journal of Physiology - Renal Physiology, 2019, 317, F616-F622.	2.7	19
13	NaHCO ₃ Dilates Mouse Afferent Arteriole Via Na ⁺ /HCO ₃ ^{â^'} Cotransporters NBCs. Hypertension, 2019, 74, 1104-1112.	2.7	11
14	New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury. American Journal of Physiology - Renal Physiology, 2019, 317, F286-F295.	2.7	18
15	Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. Journal of the American Society of Nephrology: JASN, 2019, 30, 578-593.	6.1	70
16	Effects of different storage solutions on renal ischemia tolerance after kidney transplantation in mice. American Journal of Physiology - Renal Physiology, 2018, 314, F381-F387.	2.7	16
17	A new low-nephron CKD model with hypertension, progressive decline of renal function, and enhanced inflammation in C57BL/6 mice. American Journal of Physiology - Renal Physiology, 2018, 314, F1008-F1019.	2.7	12
18	Graft function assessment in mouse models of single- and dual-kidney transplantation. American Journal of Physiology - Renal Physiology, 2018, 315, F628-F636.	2.7	4

#	Article	IF	CITATIONS
19	Glucose dilates renal afferent arterioles via glucose transporter-1. American Journal of Physiology - Renal Physiology, 2018, 315, F123-F129.	2.7	8
20	A new mouse model of hemorrhagic shock-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2017, 312, F134-F142.	2.7	14
21	Role of intratubular pressure during the ischemic phase in acute kidney injury. American Journal of Physiology - Renal Physiology, 2017, 312, F1158-F1165.	2.7	19
22	Role of the Primary Cilia on the Macula Densa and Thick Ascending Limbs in Regulation of Sodium Excretion and Hemodynamics. Hypertension, 2017, 70, 324-333.	2.7	17
23	Cross-sex transplantation alters gene expression and enhances inflammatory response in the transplanted kidneys. American Journal of Physiology - Renal Physiology, 2017, 313, F326-F338.	2.7	9
24	Role of Kidneys in Sex Differences in Angiotensin II–Induced Hypertension. Hypertension, 2017, 70, 1219-1227.	2.7	22
25	Enhanced hemodynamic responses to angiotensin II in diabetes are associated with increased expression and activity of AT1 receptors in the afferent arteriole. Physiological Genomics, 2017, 49, 531-540.	2.3	14
26	Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase $1\hat{l}_{\pm}$ Knockout and Wild-Type Mice. Hypertension, 2016, 67, 792-799.	2.7	28
27	Macula Densa Nitric Oxide Synthase $1\hat{l}^2$ Protects against Salt-Sensitive Hypertension. Journal of the American Society of Nephrology: JASN, 2016, 27, 2346-2356.	6.1	55
28	Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R757-R766.	1.8	17
29	Identification and function of adenosine A ₃ receptor in afferent arterioles. American Journal of Physiology - Renal Physiology, 2015, 308, F1020-F1025.	2.7	16
30	A New Model of Hemorrhagic Shockâ€Induced Acute Kidney Injury. FASEB Journal, 2015, 29, 807.4.	0.5	0
31	Enhanced expression and activity of Nox2 and Nox4 in the macula densa in ANG II-induced hypertensive mice. American Journal of Physiology - Renal Physiology, 2014, 306, F344-F350.	2.7	27
32	Macula Densa NOS1 Protects Against Acute Kidney Injury (AKI) Mediated by Primary Cilia. FASEB Journal, 2013, 27, 910.8.	0.5	0