
William Salas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11504315/publications.pdf Version: 2024-02-01

WILLIAM SALAS

#	Article	IF	CITATIONS
1	Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the United States of America, 2011, 108, 9899-9904.	7.1	1,659
2	Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 2005, 95, 480-492.	11.0	814
3	Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 2006, 100, 95-113.	11.0	667
4	Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science, 2012, 336, 1573-1576.	12.6	575
5	Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sensing, 2017, 9, 119.	4.0	202
6	Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutrient Cycling in Agroecosystems, 2012, 93, 163-200.	2.2	195
7	First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling, 2014, 292, 51-62.	2.5	195
8	Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecological Modelling, 2006, 196, 116-130.	2.5	166
9	Assessing Alternatives for Mitigating Net Greenhouse Gas Emissions and Increasing Yields from Rice Production in China Over the Next Twenty Years. Journal of Environmental Quality, 2006, 35, 1554-1565.	2.0	158
10	Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophysical Research Letters, 2002, 29, 33-1-33-4.	4.0	134
11	Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice agriculture of China. Global Biogeochemical Cycles, 2005, 19, .	4.9	131
12	Agricultural land-use in China: a comparison of area estimates from ground-based census and satellite-borne remote sensing. Global Ecology and Biogeography, 1999, 8, 407-416.	5.8	92
13	Mitigation potential and costs for global agricultural greenhouse gas emissions ¹ . Agricultural Economics (United Kingdom), 2008, 38, 109-115.	3.9	77
14	Regional Mapping of Plantation Extent Using Multisensor Imagery. Remote Sensing, 2016, 8, 236.	4.0	66
15	Global mitigation potential and costs of reducing agricultural non-CO ₂ greenhouse gas emissions through 2030. Journal of Integrative Environmental Sciences, 2015, 12, 87-105.	2.5	61
16	Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row rop field in <scp>I</scp> llinois. GCB Bioenergy, 2012, 4, 739-750.	5.6	56
17	Modeling biogeochemical impacts of alternative management practices for a row-crop field in Iowa. Agriculture, Ecosystems and Environment, 2008, 123, 30-48.	5.3	53
18	A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region. Agricultural Systems, 2018, 166, 10-25.	6.1	40

WILLIAM SALAS

#	Article	IF	CITATIONS
19	Mapping Total Vegetation Cover Across Western Rangelands With Moderate-Resolution Imaging Spectroradiometer Data. Rangeland Ecology and Management, 2012, 65, 456-467.	2.3	34
20	Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China. Canadian Journal of Remote Sensing, 2011, 37, 17-26.	2.4	32
21	Climate smart agriculture opportunities for mitigating soil greenhouse gas emissions across the U.S. Corn-Belt. Journal of Cleaner Production, 2020, 268, 122240.	9.3	28
22	High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire. Remote Sensing, 2012, 4, 1974-1994.	4.0	27
23	Mapping and modelling of greenhouse gas emissions from rice paddies with satellite radar observations and the DNDC biogeochemical model. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 319-329.	2.0	26
24	Yearâ€Round Nitrous Oxide Emissions as Affected by Timing and Method of Dairy Manure Application to Corn. Soil Science Society of America Journal, 2017, 81, 166-178.	2.2	25
25	Mapping Conservation Management Practices and Outcomes in the Corn Belt Using the Operational Tillage Information System (OpTIS) and the Denitrification–Decomposition (DNDC) Model. Land, 2020, 9, 408.	2.9	24
26	Changes in Irrigation Practices Likely Mitigate Nitrous Oxide Emissions From California Cropland. Global Biogeochemical Cycles, 2018, 32, 1514-1527.	4.9	23
27	Assessing Shortâ€Term Impacts of Management Practices on N ₂ 0 Emissions From Diverse Mediterranean Agricultural Ecosystems Using a Biogeochemical Model. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1557-1571.	3.0	22
28	Mapping rice greenhouse gas emissions in the Red River Delta, Vietnam. Carbon Management, 2017, 8, 99-108.	2.4	21
29	Mapping agricultural wetlands in the Sacramento Valley, USA with satellite remote sensing. Wetlands Ecology and Management, 2015, 23, 79-94.	1.5	20
30	Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions associated with milk production. Agriculture, Ecosystems and Environment, 2017, 237, 31-44.	5.3	18
31	Generation of Large-Scale Moderate-Resolution Forest Height Mosaic With Spaceborne Repeat-Pass SAR Interferometry and Lidar. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 770-787.	6.3	16
32	Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes. Agricultural Systems, 2019, 176, 102660.	6.1	14
33	Use of local greenhouse gas inventories to prioritise opportunities for climate action planning and voluntary mitigation by agricultural stakeholders in California. Journal of Environmental Planning and Management, 2013, 56, 553-571.	4.5	13
34	Global Research Alliance Modelling Platform (GRAMP): An open web platform for modelling greenhouse gas emissions from agro-ecosystems. Computers and Electronics in Agriculture, 2015, 111, 112-120.	7.7	12
35	Assessing and reducing the environmental impact of dairy production systems in the northern US in a changing climate. Agricultural Systems, 2021, 192, 103170.	6.1	6
36	Agricultural Offset Potential in the United States: Economic and Geospatial Insights. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
37	A Decreasing Trend of Nitrous Oxide Emissions From California Cropland From 2000 to 2015. Earth's Future, 2022, 10, .	6.3	2
38	A DECISION TREE-BASED APPROACH TO CALCULATE NITROUS OXIDE FLUXES FROM CHAMBER MEASUREMENTS. Canadian Journal of Soil Science, 0, , .	1.2	1