Angeles Duran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11503693/publications.pdf

Version: 2024-02-01

		159585	345221
37	4,792 citations	30	36
papers	citations	h-index	g-index
37	37	37	8996
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Signaling Adaptor p62 Is an Important NF-κBÂMediator in Tumorigenesis. Cancer Cell, 2008, 13, 343-354.	16.8	512
2	p62 Is a Key Regulator of Nutrient Sensing in the mTORC1 Pathway. Molecular Cell, 2011, 44, 134-146.	9.7	422
3	Targeted Disruption of the ζPKC Gene Results in the Impairment of the NF-κB Pathway. Molecular Cell, 2001, 8, 771-780.	9.7	362
4	p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell, 2016, 29, 935-948.	16.8	353
5	The Atypical PKC-Interacting Protein p62 Is an Important Mediator of RANK-Activated Osteoclastogenesis. Developmental Cell, 2004, 6, 303-309.	7.0	286
6	Essential role of RelA Ser311 phosphorylation by ÂPKC in NF-ÂB transcriptional activation. EMBO Journal, 2003, 22, 3910-3918.	7.8	285
7	Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metabolism, 2006, 3, 211-222.	16.2	262
8	Metabolic Reprogramming of Stromal Fibroblasts through p62-mTORC1 Signaling Promotes Inflammation and Tumorigenesis. Cancer Cell, 2014, 26, 121-135.	16.8	258
9	K63 Polyubiquitination and Activation of mTOR by the p62-TRAF6 Complex in Nutrient-Activated Cells. Molecular Cell, 2013, 51, 283-296.	9.7	230
10	p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell, 2016, 30, 595-609.	16.8	183
11	Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis. Cell, 2013, 152, 599-611.	28.9	160
12	Increased Serine and One-Carbon Pathway Metabolism by PKCl̂»/l̂¹ Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell, 2019, 35, 385-400.e9.	16.8	128
13	Role of zetaPKC in B-cell signaling and function. EMBO Journal, 2002, 21, 4049-4057.	7.8	122
14	Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade. Cell Reports, 2015, 12, 1339-1352.	6.4	100
15	Tumourâ€suppression activity of the proapoptotic regulator Par4. EMBO Reports, 2005, 6, 577-583.	4.5	99
16	A functional role for the p62–ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Reports, 2010, 11, 226-232.	4.5	97
17	ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma. Cell Metabolism, 2017, 26, 817-829.e6.	16.2	81
18	Adipocyte p62/SQSTM1 Suppresses Tumorigenesis through Opposite Regulations of Metabolism in Adipose Tissue and Tumor. Cancer Cell, 2018, 33, 770-784.e6.	16.8	81

#	Article	lF	Citations
19	Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis. EMBO Journal, 2008, 27, 2181-2193.	7.8	77
20	Protein Kinase CÎ \P Represses the Interleukin-6 Promoter and Impairs Tumorigenesis In Vivo. Molecular and Cellular Biology, 2009, 29, 104-115.	2.3	76
21	$PKC\hat{l} \gg \hat{l}^1$ Loss Induces Autophagy, Oxidative Phosphorylation, and NRF2 to Promote Liver Cancer Progression. Cancer Cell, 2020, 38, 247-262.e11.	16.8	73
22	NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. Journal of Hepatology, 2020, 72, 1182-1195.	3.7	71
23	Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ. Cell Reports, 2015, 10, 740-754.	6.4	70
24	p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-κB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche. Cell Reports, 2014, 9, 2084-2097.	6.4	56
25	Crosstalk between PKCζ and the IL4/Stat6 pathway during T-cell-mediated hepatitis. EMBO Journal, 2004, 23, 4595-4605.	7.8	53
26	The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. Cell Reports, 2018, 23, 1178-1191.	6.4	53
27	Stromal SOX2 Upregulation Promotes Tumorigenesis through the Generation of a SFRP1/2-Expressing Cancer-Associated Fibroblast Population. Developmental Cell, 2021, 56, 95-110.e10.	7.0	50
28	Atypical protein kinase C (aPKCζ and aPKCλ) is dispensable for mammalian hematopoietic stem cell activity and blood formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9957-9962.	7.1	47
29	A Macrophage NBR1-MEKK3 Complex Triggers JNK-Mediated Adipose Tissue Inflammation in Obesity. Cell Metabolism, 2014, 20, 499-511.	16.2	36
30	Simultaneous Loss of Both Atypical Protein Kinase C Genes in the Intestinal Epithelium Drives Serrated Intestinal Cancer by Impairing Immunosurveillance. Immunity, 2018, 49, 1132-1147.e7.	14.3	35
31	The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Reports, 2022, 39, 110792.	6.4	22
32	Mouse model of colorectal cancer: Orthotopic co-implantation of tumor and stroma cells in cecum and rectum. STAR Protocols, 2021, 2, 100297.	1.2	15
33	NBR1 is a critical step in the repression of thermogenesis of p62-deficient adipocytes through PPARÎ ³ . Nature Communications, 2021, 12, 2876.	12.8	13
34	PKCλ $\hat{\Pi}$ inhibition activates an ULK2-mediated interferon response to repress tumorigenesis. Molecular Cell, 2021, 81, 4509-4526.e10.	9.7	12
35	An Orthotopic Implantation Mouse Model of Hepatocellular Carcinoma with Underlying Liver Steatosis. STAR Protocols, 2020, 1, 100185.	1.2	7
36	Protein kinase $\hat{Cl} > \hat{l}^1$ in cancer: a contextual balance of time and signals. Trends in Cell Biology, 2022, 32, 1023-1034.	7.9	5

Angeles Duran

#	Article	lF	CITATIONS
37	Sqstm1 Is Required to Retain Hematopoietic Stem Cell/ Progenitors As a Negative Regulator of Macrophage-Dependent Inflammatory Signaling in the Bone Marrow Osteoblastic Niche. Blood, 2014, 124, 350-350.	1.4	O