Robert G Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11503253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosomal over-replication in Escherichia coli recG cells is triggered by replication fork fusion and amplified if replichore symmetry is disturbed. Nucleic Acids Research, 2018, 46, 7701-7715.	14.5	34
2	Inhibiting translation elongation can aid genome duplication in Escherichia coli. Nucleic Acids Research, 2017, 45, 2571-2584.	14.5	12
3	The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication. Genes, 2016, 7, 42.	2.4	13
4	25Âyears on and no end in sight: a perspective on the role of RecG protein. Current Genetics, 2016, 62, 827-840.	1.7	51
5	Cellular location and activity of Escherichia coli RecG proteins shed light on the function of its structurally unresolved C-terminus. Nucleic Acids Research, 2014, 42, 5702-5714.	14.5	13
6	Avoiding chromosome pathology when replication forks collide. Nature, 2013, 500, 608-611.	27.8	117
7	Protein–DNA complexes are the primary sources of replication fork pausing in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7252-7257.	7.1	71
8	Modulation of DNA damage tolerance in E scherichia coli recG and ruv strains by mutations affecting PriB , the ribosome and RNA polymerase. Molecular Microbiology, 2012, 86, 675-691.	2.5	12
9	On the viability of Escherichia colicells lacking DNA topoisomerase I. BMC Microbiology, 2012, 12, 26.	3.3	32
10	Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Research, 2011, 39, 949-957.	14.5	55
11	Is RecG a general guardian of the bacterial genome?. DNA Repair, 2010, 9, 210-223.	2.8	74
12	Promoting and Avoiding Recombination: Contrasting Activities of the <i>Escherichia coli</i> RuvABC Holliday Junction Resolvase and RecG DNA Translocase. Genetics, 2010, 185, 23-37.	2.9	27
13	RecG Protein and Single-Strand DNA Exonucleases Avoid Cell Lethality Associated With PriA Helicase Activity in <i>Escherichia coli</i> . Genetics, 2010, 186, 473-492.	2.9	45
14	Pathological replication in cells lacking RecG DNA translocase. Molecular Microbiology, 2009, 73, 352-366.	2.5	47
15	Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase. Molecular Microbiology, 2009, 74, 940-955.	2.5	50
16	Rep Provides a Second Motor at the Replisome to Promote Duplication of Protein-Bound DNA. Molecular Cell, 2009, 36, 654-666.	9.7	158
17	Maintaining replication fork integrity in UV-irradiated Escherichia coli cells. DNA Repair, 2008, 7, 1589-1602.	2.8	27
18	Analysis of Strand Transfer and Template Switching Mechanisms of DNA Gap Repair by Homologous Recombination in Escherichia coli: Predominance of Strand Transfer. Journal of Molecular Biology, 2008, 381, 803-809.	4.2	14

ROBERT G LLOYD

#	Article	IF	CITATIONS
19	Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes and Development, 2007, 21, 668-681.	5.9	69
20	Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Research, 2007, 35, 5729-5747.	14.5	58
21	Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair, 2007, 6, 981-993.	2.8	69
22	RusA Holliday junction resolvase: DNA complex structure—insights into selectivity and specificity. Nucleic Acids Research, 2006, 34, 5577-5584.	14.5	19
23	Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair. Genes and Development, 2006, 20, 2135-2147.	5.9	60
24	RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Molecular Microbiology, 2005, 57, 97-110.	2.5	100
25	DNA Binding by the Substrate Specificity (Wedge) Domain of RecG Helicase Suggests a Role in Processivity. Journal of Biological Chemistry, 2005, 280, 13921-13927.	3.4	50
26	RNA Polymerase Modulators and DNA Repair Activities Resolve Conflicts between DNA Replication and Transcription. Molecular Cell, 2005, 19, 247-258.	9.7	174
27	Conservation of RecG activity from pathogens to hyperthermophiles. DNA Repair, 2005, 4, 23-31.	2.8	14
28	Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 49-59.	4.0	53
29	RecG helicase promotes DNA double-strand break repair. Molecular Microbiology, 2004, 52, 119-132.	2.5	74
30	A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO Journal, 2003, 22, 724-734.	7.8	85
31	The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO Journal, 2003, 22, 735-745.	7.8	33
32	The Structure of Escherichia coli RusA Endonuclease Reveals a New Holliday Junction DNA Binding Fold. Structure, 2003, 11, 1557-1567.	3.3	24
33	PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Molecular Microbiology, 2003, 47, 1091-1100.	2.5	46
34	Direct Rescue of Stalled DNA Replication Forks via the Combined Action of PriA and RecG Helicase Activities. Molecular Cell, 2002, 9, 241-251.	9.7	128
35	Substrate Specificity of RusA Resolvase Reveals the DNA Structures Targeted by RuvAB and RecG In Vivo. Molecular Cell, 2002, 10, 187-198.	9.7	68
36	Genome stability and the processing of damaged replication forks by RecG. Trends in Genetics, 2002, 18, 413-419.	6.7	134

Robert G Lloyd

#	Article	IF	CITATIONS
37	RusA proteins from the extreme thermophile Aquifex aeolicus and lactococcal phage r1t resolve Holliday junctions. Molecular Microbiology, 2002, 44, 549-559.	2.5	24
38	Holliday junction binding and processing by the RuvA protein of Mycoplasma pneumoniae. FEBS Journal, 2002, 269, 1525-1533.	0.2	21
39	The RuvABC resolvasome. FEBS Journal, 2002, 269, 5492-5501.	0.2	41
40	Recombinational repair and restart of damaged replication forks. Nature Reviews Molecular Cell Biology, 2002, 3, 859-870.	37.0	369
41	Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase. EMBO Journal, 2002, 21, 6944-6953.	7.8	70
42	Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli 1 1Edited by J. Karn. Journal of Molecular Biology, 2001, 310, 577-589.	4.2	10
43	Action of RuvAB at Replication Fork Structures. Journal of Biological Chemistry, 2001, 276, 41938-41944.	3.4	58
44	Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA holliday junction resolvase. Journal of Molecular Biology, 2000, 304, 165-176.	4.2	11
45	Modulation of RNA Polymerase by (p)ppGpp Reveals a RecG-Dependent Mechanism for Replication Fork Progression. Cell, 2000, 101, 35-45.	28.9	275
46	RecG helicase activity at three- and four-strand DNA structures. Nucleic Acids Research, 1999, 27, 3049-3056.	14.5	82
47	Identification of three aspartic acid residues essential for catalysis by the RusA holliday junction resolvase 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 286, 403-415.	4.2	27
48	Holliday Junction Processing in Bacteria: Insights from the Evolutionary Conservation of RuvABC, RecG, and RusA. Journal of Bacteriology, 1999, 181, 5543-5550.	2.2	155
49	Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 Ã resolution. Nature Structural Biology, 1998, 5, 441-446.	9.7	135
50	Structural similarities between Escherichia coli RuvA protein and other DNA-binding proteins and a mutational analysis of its binding to the holliday junction. Journal of Molecular Biology, 1998, 278, 105-116.	4.2	23
51	Sequence-specificity of holliday junction resolution: identification of RuvC mutants defective in metal binding and target site recognition. Journal of Molecular Biology, 1998, 281, 17-29.	4.2	17
52	Targeting Holliday Junctions by the RecG Branch Migration Protein of Escherichia coli. Journal of Biological Chemistry, 1998, 273, 19729-19739.	3.4	83
53	Sequence Specificity and Biochemical Characterization of the RusA Holliday Junction Resolvase of Escherichia coli. Journal of Biological Chemistry, 1997, 272, 14873-14882.	3.4	65
54	The DNA replication protein PriA and the recombination protein RecG bind D-loops. Journal of Molecular Biology, 1997, 270, 212-221.	4.2	191

ROBERT G LLOYD

#	Article	IF	CITATIONS
55	Insights into the mechanisms of homologous recombination from the structure of RuvA. Current Opinion in Structural Biology, 1997, 7, 798-803.	5.7	20
56	Holliday Junction Resolvases Encoded by HomologousrusAGenes inEscherichia coliK-12 and Phage 82. Journal of Molecular Biology, 1996, 257, 561-573.	4.2	141
5 7	The RecG Branch Migration Protein ofEscherichia coliDissociates R-loops. Journal of Molecular Biology, 1996, 264, 713-721.	4.2	88
58	Interactions Between RuvA and RuvC at Holliday Junctions: Inhibition of Junction Cleavage and Formation of a RuvA-RuvC-DNA Complex. Journal of Molecular Biology, 1996, 264, 878-890.	4.2	86
59	The mmsA locus of Streptococcus pneumoniae encodes a RecGâ€like protein involved in DNA repair and in threeâ€strand recombination. Molecular Microbiology, 1996, 19, 1035-1045.	2.5	31
60	Altered SOS induction associated with mutations in recF, recO and recR. Molecular Genetics and Genomics, 1995, 246, 174-179.	2.4	70
61	A mutation in helicase motif III ofE.coliRecG protein abolishes branch migration of Holliday junctions. Nucleic Acids Research, 1994, 22, 308-313.	14.5	36
62	Reverse branch migration of holliday junctions by RecG protein: A new mechanism for resolution of intermediates in recombination and DNA repair. Cell, 1993, 75, 341-350.	28.9	176
63	AnE.coliRuvC mutant defective in cleavage of synthetic Holliday junctions. Nucleic Acids Research, 1993, 21, 3359-3364.	14.5	15
64	Processing of recombination intermediates by the RecG and RuvAB proteins ofEscherichia coli. Nucleic Acids Research, 1993, 21, 1719-1725.	14.5	144
65	Genetic analysis of recombination in prokaryotes. Current Opinion in Genetics and Development, 1992, 2, 683-690.	3.3	37
66	Purification and properties of the RuvA and RuvB proteins of Escherichia coli. Molecular Genetics and Genomics, 1992, 235, 1-10.	2.4	105
67	Location of a mutation in the aspartyl-tRNA synthetae gene of Escherichia coli K12. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 264, 93-96.	1.1	10
68	Formation and resolution of recombination intermediates by E. coliRecA and RuvC proteins. Nature, 1991, 354, 506-510.	27.8	243
69	Evidence of abortive recombination in ruv mutants of Escherichia coli K12. Molecular Genetics and Genomics, 1991, 225, 266-272.	2.4	73
70	Molecular and functional analysis of the ruv region of Escherichia coli K-12 reveals three genes involved in DNA repair and recombination. Molecular Genetics and Genomics, 1990, 221, 219-226.	2.4	132
71	A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Research, 1990, 18, 6503-6508.	14.5	196
72	Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Molecular Genetics and Genomics, 1989, 216, 503-510.	2.4	113

ROBERT G LLOYD

#	Article	IF	CITATIONS
73	Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Molecular Genetics and Genomics, 1988, 212, 317-324.	2.4	108
74	Nucleotide sequencing of theruvregion ofEscherichia coliK-12 reveals a LexA regulated operon encoding two genes. Nucleic Acids Research, 1988, 16, 1541-1549.	14.5	106
75	Formation of recombinant lacZ + DNA in conjugational crosses with a recB mutant of Escherichia coli K12 depends on recF, recJ, and recO. Molecular Genetics and Genomics, 1987, 209, 135-141.	2.4	60
76	The recN locus of Escherichia coli K12: molecular analysis and identification of the gene product. Molecular Genetics and Genomics, 1985, 201, 301-307.	2.4	31
77	Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12. Molecular Genetics and Genomics, 1984, 194, 303-309.	2.4	182
78	Genetic analysis and molecular cloning of the Escherichia coli ruv gene. Molecular Genetics and Genomics, 1984, 194, 322-329.	2.4	79
79	A molecular model for conjugational recombination in Escherichia coli K12. Molecular Genetics and Genomics, 1984, 197, 328-336.	2.4	42
80	Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Molecular Genetics and Genomics, 1984, 195, 267-274.	2.4	163
81	lexA dependent recombination in uvrD strains of Escherichia coli. Molecular Genetics and Genomics, 1983, 189, 157-161.	2.4	41
82	On the nature of the RecBC and RecF pathways of conjugal recombination in Escherichia coli. Molecular Genetics and Genomics, 1983, 190, 156-161.	2.4	50
83	Inducible expression of a gene specific to the RecF pathway for recombination in Escherichia coli K12. Molecular Genetics and Genomics, 1983, 190, 162-167.	2.4	125
84	Damage to DNA induces expression of the ruv gene of Escherichia coli. Molecular Genetics and Genomics, 1982, 185, 352-355.	2.4	114
85	Loss of Hfr DNA fromEscherichia colimerozygotes during inhibition of conjugation by nalidixic acid. Genetical Research, 1980, 36, 69-79.	0.9	9
86	Hyper-recombination in uvrD mutants of Escherichia coli K-12. Molecular Genetics and Genomics, 1980, 180, 185-191.	2.4	116
87	Kinetics of recA function in conjugational recombinant formation. Molecular Genetics and Genomics, 1979, 169, 219-228.	2.4	10
88	Isolation of Recâ^' mutants from an F-prime merodiploid strain of Escherichia coli K-12. Molecular Genetics and Genomics, 1976, 143, 223-232.	2.4	27
89	SOME GENETIC CONSEQUENCES OF CHANGES IN THE LEVEL OF recA GENE FUNCTION IN ESCHERICHIA COLI K-12. Genetics, 1976, 84, 675-695.	2.9	43
90	The genetic location of the sbcA gene of Escherichia coli. Molecular Genetics and Genomics, 1974, 134, 157-171.	2.4	65

#	Article	IF	CITATIONS
91	Isolation and Characterization of an Escherichia coli K-12 Mutant with a Temperature-Sensitive RecA â~' Phenotype. Journal of Bacteriology, 1974, 120, 407-415.	2.2	111